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1 Erratum

Until Dec. 1, 2016, a version of this document appeared on this Wiki which contained an incorrect
step in the derivation of the kinetic model. This led to a model prediction which, by chance,
happened to match the experimental data extremely well. The interpretations and analyses
presented in the document were based on this incorrect data.

We realized after the Wiki Freeze deadline that this was the case, and contacted iGEM HQ
about the situation. We also informed the judges at the 2016 Jamboree that the modeling
document on the Wiki was inaccurate, and that corrected results were used for the Presentation
and Poster.

This document now contains the corrected kinetic model, and analyses and interpretations
are drawn and conducted appropriately.

2 Motivation

One of the components of our Circuit Control Toolbox is a suite of parts which allow for the use
of decoy transcription factor binding arrays that make use of Molecular Titration to shift the
sensitivity of a gene or circuit’s response to transcription factor concentration. Part of our suite
is a series of parts which can be used to construct tetO and lacO binding arrays of arbitrary
length using our protocol for UNS-guided Iterative Capped Assembly.
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For teams and scientists interested in designing their own decoy binding arrays, it is important
to be able to make informed predictions about the part’s impact on an existing circuit prior to
its actual construction. To facilitate this, we developed a mathematical model which is explicitly
parametrized by physiological values for variable aspects of Toolbox parts, such as the number
of binding sites on an array or the array’s plasmid backbone.

3 Model

3.1 Design and Solution

We developed a simple kinetic ODE model of a basic GFP-expression system, where constitutively
expressed tetR inhibits the expression of a pTet-regulated GFP. The model accounts for the
activity of aTC, which disables tetR’s DNA-binding ability when bound, and the presence of
decoy tetO arrays. The kinetic diagram for our model is given by:
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which lead to the mass-action ODE system

Ṫ = αT − γ(T + TP + TA+ TO)T −
k+P T ∗ P + k−P TP − k

+
AT ∗A+ k−ATA− k

+
OT ∗O + k−OTO

Ṗ = −k+P T ∗ P + k−P TP

˙TP = k+P T ∗ P − k
−
P TP

Ȧ = −k+AT ∗A+ k−ATA

˙TA = k+AT ∗A− k
−
ATA

Ȯ = −k+OT ∗O + k−OTO

˙TO = k+OT ∗O − k
−
OTO

ṁ = αmP − γmm
Ġ = αGm− γGG

where for simplicity we have written T ≡ tetR, P ≡ pTet, TP ≡ pTetbound, A ≡ aTC, TA ≡
tetRdisabled, O ≡ tetO, TO ≡ tetObound, m ≡ mRNAGFP , and G ≡ GFP .

Note that we can naturally define conserved quantities in this system which will be invariant
over time. These are

Ptot = P + TP

Atot = A+ TA

Otot = O + TO

Furthermore, note that one can deduce from the equations that we can intuitively define Ttot =
T + TP + TA+ TO. This allows us to define the flux

˙Ttot = Ṫ + ˙TP + ˙TA+ ˙TO
˙Ttot = Ṫ − Ṗ − Ȧ− Ȯ
˙Ttot = αT − γTTtot

where the second equality is true because for any conservation condition Xtot, ˙Xtot = 0.
We are now able to reduce our system of 9 variables down to 6 variables using our conservation

conditions:

˙Ttot = αT − γTTtot
Ṗ = −k+P T ∗ P + k−P (Ptot − P )

Ȧ = −k+AT ∗A+ k−A(Atot −A)

Ȯ = −k+OT ∗O + k−O(Otot −O)

ṁ = αmP − γmm
Ġ = αGm− γGG

This expression can be evaluated at steady-state by setting all of the time derivatives on the
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left hand side to 0 and rearranging terms to obtain

Ttot;ss =
αT

γT
≡ JT

Pss =
KPPtot

KP + Tss

Ass =
KAAtot

KA + Tss

Oss =
KOOtot

KO +Oss

mss =
αm

γm
Pss ≡ JmPss

Gss =
αG

γG
mss ≡ JGmss

Where K ≡ k−/k+ is the dissociation constant, and we have defined flux terms J for convenience
of notation.

In order to write an expression for Gss in terms of only the rate parameters and conservation
conditions of the system, we can see from the above equations that we need to determine an
expression for Tss in terms of only rate parameters and conservation conditions. We can do this
using the Ttot expression: recall that we had defined

Ttot = T + TP + TA+ TO = T + (Ptot − P ) + (Atot −A) + (Otot −O).

This means that

Ttot;ss = JT = Tss + (Ptot − Pss) + (Atot −Ass) + (Otot −Oss),

and we can substitute our expressions for Pss, Ass, and Oss and rearrange terms to eventually
obtain

0 = T 4
ss + a1T

3
ss + a2T

2
ss + a3Tss + a4,

where

a1 = −JT +KP +KA +KO + Ptot +Atot +Otot

a2 = −JTKP − JTKA − JTKO +KPKA +KPKO +KAKO +

Ptot(KA +KO) +Atot(KP +KO) +Otot(KP +KA)

a3 = −JTKPKA − JTKPKO +KPKAKO + PtotKAKO +AtotKPKO +OtotKPKA

a4 = −JTKPKAKO

This provides an expression for which can be solved in a straightforward fashion to compute
the value of Tss solely in terms of the rate parameters and conserved conditions of the system.
We found that in the parameter values used in this study, Tss always took a single distinct real
nonnegative value. Returning to our original reduced model, we see that once we obtain Tss we
can follow a cascade of function composition to Gss via

Gss = JGmss = JG(JmPss) = JGJm
KPPtot

KP + Tss
.
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3.2 Explicit Model Parametrization by Toolbox Parameters

We have now obtained an expression to compute the steady-state concentration of GFP in our
system using only the values of the rate parameters and conservation conditions. Note that
these conservation condition values correspond explicitly to physiological parameters of toolbox
settings in the following way:

The two most easily-tunable parameters for the Titration suite of our Toolbox are the copy
number of the plasmid backbone and the number of binding sites on the decoy binding array.
We can define two parameters: B to define the mean copy number of the plasmid in a given cell,
and C to define the number of copies on a single plasmid. Using the approximation that in an
E. coli volume, 1 molecule ≈ 1 nM concentration [1], we can decompose our conserved quantities
as

Ptot = CpTet ∗BpTet

Otot = CtetO ∗BtetO

where we can have distinct values of C and B if the reporter and array are on different plasmids.
This decomposition provides our model with an explicit link between the design specifications

of a decoy binding array with its kinetic realization. Details about the reported mean copy
numbers for various BioBrick plasmid backbones are given in

http://parts.igem.org/Help:Plasmid_backbones/Nomenclature

3.3 Fluorescence to Concentration Conversion

Being a kinetic model, our model processes and evaluates the behavior of the system through
concentrations of the relevant proteins. However, we and many users of the Toolbox would likely
use fluorescent measurements rather than fluorescent protein concentrations to characterize the
behavior of their system. In order to compare our model’s results to experimental data, then,
we would need a process to convert between fluorescence and fluorescent protein concentration.

Our objective is to obtain an absolute fluorescence unit called MEGFP (Molecules of Equiva-
lent GFP). We modeled our procedure off the workflow developed by the Endy Lab [2] to convert
arbitrary fluorescent measurements from a plate reader to MEGFP. We obtained a purified con-
centration of GFP [3] and diluted it down to various concentration levels and measured these
values over different days on the plate reader. The relationship between GFP concentration
and GFP fluorescence was linear, as previously described in the literature [4]. We obtained the
conversion curve

FluorescenceMEGFP =
(FluorescencePlateReader;au + 683.02)

100

with an R2 value of 0.93263. Here FluorescenceMEGFP takes units of concentration (nM).
We also wanted to be able to convert fluorescence values obtained via flow cytometry on

our FACS machine to units of MEGFP. To do this, we measured an IPTG induction curve of a
standard GFP-expression cassette driven by pLac in the presence of constitutive lacI expression
(BBa K2066110) on the FACS machine and converted it to absolute fluorescence units (MEFL)
using our standard FACS protocol [see Protocol section of our Wiki]. We then immediately
measured these same samples in the plate reader and obtained fluorescence measurements there.
We then plotted the plate reader fluorescence values against the FACS fluorescent values at
each condition, and found that the the relationship was linear as expected [5]. We obtained the
conversion curve

FluorescencePlateReader;au = 0.9054 ∗ FluorescenceFACS;MEFL + 918.10
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with an R2 value of 0.9642. This curve can be composed with the above curve to obtain a
conversion from MEFL values to MEGFP concentrations.

4 Results

4.1 Model Tuning

In order to validate our model we used it to predict the impact of an 85-repeat tetO array (BBa
K2066550) on pSB1C3 backbone on the aTC-induction curve of a pTet-GFP reporter construct
in the presence of constitutive tetR expression (BBa K2066053).

We first searched the literature for values for rate constants. We obtained the following
values:
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Parameter Meaning Value Justification
αT Production rate of tetR ? s−1 Fit to Data (see next page)
γT Degradation rate of tetR 0.6207288 s−1 Cell doubling time in M9 minimal media is 67 minutes [6].
KP Dissociation constant of tetR with the pTet Promoter 0.1 nM [7]
KA Dissociation constant of aTC with the tetR molecule 0.36 nM [7]
KO Dissociation constant of tetR with the tetO binding site 0.1 nM [7]
αm Transcription rate from the pTet promoter ? nM/s Fit to Data (see next page)
γm Degradation rate of the GFP transcript 1/120 s−1 Assumption that transcript half-life is 2 minutes [8].
αG Translation rate of GFP from transcript ? nM/s Fit to Data (see next page)
γG Degradation rate of GFP 0.6207288 s−1 Cell doubling time in M9 minimal media is 67 minutes [6].

Table 1: Known Parameter Values for Kinetic Model
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Since we were unable to obtain parameter values for the three α terms with which we could
be confident, we decided to fit these parameters to an aTC-induction curve of BBa K2066110
without the decoy binding array. We iterated through a parameter range that spanned three
orders of magnitude for each of these α terms and minimzed the pointwise squared error between
the model-generated steady-state induction curve and the experimentally observed steady-state
induction curve. We excluded the last three points in the experimentally-obtained curve from our
fitting procedure, as they are likely due to toxicity effects from the high concentration of ATC.
The model-generated curves were obtained by solving our model for Gss with Ptot = 1 ∗ 200 and
Atot given by the aTC induction point. We obtained a best-fit parameter set of αT = 245.5882,
αm = 0.0023, and αG = 125 (Fig 1).

Figure 1: Optimized fit of Kinetic Model to observed induction curve of pTet GFP (BBa
K2066053). αT = 245.5882, αm = 0.0023, and αG = 125. Ptot = 1 ∗ 200 and Otot = 0.
Curves were fit prior to normalization to the maximal induction condition.

4.2 Assessment of Predictive Power

We then fixed our optimized α parameters and included the 85x tetO array into our model.
Because our decoy binding array has 85 repeats, and because pSB1C3 is reported to have 100-
300 copies per cell [9], we follow our guidelines from Section 2.2 and set Otot = 85∗200. However,
in doing so our model predicted that aTC induction would not occur (Fig 2). This is probably
because the amount of decoy binding sites is so great relative to the free tetR concentration that
pTet production is already near its maximal expression. Thus the influence of aTC is negligible
on the already-induced process. This clearly does not match the measured data, in which we
obtained a leftward-shifted induction curve.
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Figure 2: The Kinetic Model does not correctly predict the impact of the 85x tetO array on
pSB1C3 on the induction curve of BBa K2066053 on pSB1A3. The +Array model curve was
not fit to to the +Array data curve. Curves are normalized to their maximal expression level. α
and Ptot values are as before. Otot = 85 ∗ 200.

In order to investigate the discrepancy between the model-generated response and our exper-
imentally observed response, we simulated a number of different plasmid backbones for the 85x
tetO array with the α parameters still fixed as before. We found that a plasmid backbone with
mean copy number 5 can replicate the observed normalized induction curve (Fig 3).

5 Discussion

While we have demonstrated that our simple kinetic model is able to generate induction curves
which match our experimentally-observed decoy binding array data, we find that the results for
our high-copy binding array are only explained by a simulation of a low-copy binding array. A
number of factors likely contribute to this discrepancy.

The primary factor is perhaps that the cells from this experiment are likely under greater-
than-usual conditions of metabolic stress. This is supported by the fact that high concentrations
of aTC seem to be inducing a toxicity effect that depletes gene expression. This may manifest
itself in a suppression of the array, through inhibition of its replication or an expulsion of the
plasmid. The latter mechanism draws support from our single-cell FACS data of these measure-
ments, in which we observed bimodality in the +Array condition’s measurements that we did
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Figure 3: A simulated 85x tetO binding array on 5-copy plasmid backbone replicates the observed
induction curve of 85x tetO binding array on pSB1C3. The +Array model curve was not fit to
the +Array data curve. Curves are normalized to their maximal expression level. α and Ptot

values are as before. Otot = 85 ∗ 5.

not observe in the -Array condition (Fig 4). This bimodality might be explained by a selection
for removal of the array in the presence of insufficient antibiotic selection or selection for a dis-
abling of the array to prevent high protein expression. Hence the observed +Array curve could
be the result of a population-level averaging effect between a model-predicted -Array curve an a
model-predicted +Array on pSB1C3 curve.

Figure 4: Representative FACS plots of the same induction condition of the BBa K2066053
induction curves with (left) and without (right) the 85x tetO binding array on pSB1C3.
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Thus we see that although the decoy binding array can indeed exhibit the expected effects of
molecular titration on a circuit component’s induction curve, obtaining a precise level of control
over the extent of this shift in sensitivity-to-input at the level of binding array design choices
such as the number of binding sites or the copy number of the plasmid backbone still remains
elusive. Such a level of control would likely require an explicit accounting of the metabolic strain
imposed upon the cell by plasmids on high copy numbers. However, this suggests that the precise
nature of the impact of low-copy arrays on low-copy reporters or circuits, owing to their lessened
strain on the cell, may still be predictable by our simple kinetic model.
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