NOTE

Random effect multiplicative model

The following random effect multiplicative heteroscedastic linear model :
Y;J:C{l‘u]-i-guojl, ]_= 1’2’...’1’1':1’2,...’]’ (1)

| - number of wells, J number of sampled instants along the time range and Y;; is the
absorbance for well i at time j. The basic assumptions for this model are the following. The
terms of the well component, «; , account for a random fluctuation factor, with mean 1.
The actual value of «; jaccounts for an overfitting or an underfitting of the mean
absorbance curve along time. Its variance is ¢2 and its distribution is assumed to be
normal. The time mean effects, u;, are unknown values that model the overall well mean
absorbance along time. The positive constants ajz are the absorbance variances for
the j-th time instant and the errors,¢;;, are standard normal random variables that account
for experimental error. As a consequence, the Y ;; are normally distributed with mean y;
and variance M,2-0§ + af. Model (1) is an extension of a principal mixed effect model.
Parameter estimation

A very simple approach has been adopted for parameter estimation. The method of
moments has been used to obtain estimators for the mean (u;) and the variance (0]-2) time
effect, as well as for the variance of the well random effect (0%):

where * denotes average along the pertaining index,
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In practice, outliers may seriously affect the estimators 2 and Ejz above. For this reason,
robust versions of these have been used:g? = (MAD(&.)/®~1(0.75))? and 6]-2 =
(MAD(é_j)/d>‘1(0.75))2 , Wwhere MAD(x ¢) = Median (|xi — Me|) and Me =

Median (x ) and @ is the standard normal cumulative distribution function. These



robust versions are based on the fact that, for a normal distribution with mean y and
standard deviation g, the following relationship, between its dispersion and its MAD,
holds: 0 = MAD - @ — 1 (0.75).

Boostrap resampling plan

In order to construct simultaneous prediction intervals a bootstrap resampling method has
been considered to mimic the joint probability distribution of the random vector
(Yi1, Yi2,..., Yi]). To that aim, the following procedure has been designed:

1.Given the original absorbance sample,Yij (i = 1,2,...,1,j = 1,2,...,]), compute
the estimations 4; , o‘—jz(j = 1,2,...,J) and a2 detailed in the previous subsection.

2.Fix the number of bootstrap resamples, B, typically a large number (B = 1000 or 5000,
for example).

3.Foreveryb = 1,2,..., B, draw bootstrap random well effect replications, «; , from a
normal distribution with mean 1 and variance 62 , and the bootstrap version of the
experimental error, g,; , (j = 1, 2,..., J) from a standard normal distribution.

4.Using the bootstrap analogue of the well effect ( a;, ), the bootstrap random errors (&, )
and the estimators from the original sample (4; ,6—1-2 ), the bootstrap version of the
absorbance is easily defined via (1):

The sample of simulated vectors (Y,y, Y5, -+, Y,;,) (b = 1,2,..., B) can be used to
approximate the joint distribution of the random vector (Yi1, Yi2,..., Y iJ), whichis
needed to construct the prediction band.

Bootstrap prediction band

Since the number of sampled time instants is usually moderate or high, correction for
multiple prediction intervals is an important issue. Given an initial prediction level,1 — «,
forasmall @ (@ = 0.01 or 0.05,typically), marginal (1 — a) — prediction intervals,
(?j,uj), foreverytimeinstantj = 1,2,..., J can be easily constructed. Their

endpoints, ¢jand uj, are the E] B th and [(1 - %)] B th ordered statistics of the
resample {TJ /b=1.2, B} , Where [x] denotes the integer part of x. In other terms,
¢jand uj, are the values that are in positions E] B and [(1 - %)] B , when sorting the

bootstrap resample in an increasing order.

Individual prediction intervals have approximately the nominal coverage probability

(1 — a) when they are considered separately (for a particular sampled instant).
However, the probability that the whole growth curve is included in the band depicted by
the whole set of intervals is much smaller. This is known as the multiple range testing
problem or the false discovery rate in high dimensional statistical problems.



A classical way to correct for multiple testing is the popular Bonferroni approach. In a
hypothesis testing context, the idea behind this approach is to consider a new significance

level,agons = % , and compute individual tests using this new level. The resulting multiple

test has a multiple level which is much closer to the desired a. However, it is well known
that the Bonferroni approach is a conservative procedure. In our context, this means that
the joint coverage probability of the prediction band would be larger than the desired

1 — a.

Starting from the conservative Bonferroni approach and the anticonservative individual
testing approach, the following algorithm finds an approximate (1 — a) — prediction
interval, with a given approximation error § (typically § is small in comparison with the

nominal a, for instance § = %):

1.Fix al(;’a, = Apony = % and a,(l?;h = a. Fix the iteration number, k = 0.

R
2.Compute apogn = ——5——

3.Use the bootstrap resamples to compute individual predictions intervals with 1 —
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4 .Compute with the same bootstrap resamples, the proportion of simulated growth
curves that are included in each of these confidence bands. These proportions
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satisfy Piow = Pmean = Phign' Prow z2l-az phighand Piow = Phign

5.1f piden = 1 -, then defineafss” = al2s, and ali’ = af;),. Otherwise
L (kD) _ (k) (k+1) _ (k)

define ay,,, " = a;,, and ay; " = dpean

6.Stop at step k if p,(,’fgan — (1 — a)| < 6. Otherwise increase k in one unit and repeat

Steps 2-5
The final approximate (1 — a) simultaneous prediction intervals are those obtained for
(@)

mean IN the last iteration.
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