Detailed Methods Description - Optogenetic Kill Switch

The ordinary differential equations are constructed using mass action kinetics and quasi steady state approximations (Michaelis Menten). Here we provide the more detailed system representations of all four systems: pDusk, pDawn, pDusk + const. mazF, pDawn + const. mazE. The data and Matlab scripts were also made available online for future iGEM Teams to built other in silico optogenetic tools:
https://github.com/marioisbeck/iGEM_Wageningen_UR_2016.

To evaluate how well a certain parameter set describes the response of the Ohlendorf et al. (2012) system, we used the sum of squared residuals to score each parameter set as described in Raue et al. (2009).

$$
\chi^{2}(\theta)=\sum_{k=1}^{m} \sum_{l=1}^{d}\left(\frac{y_{k l}^{d}-y_{k}\left(\theta, t_{l}\right)}{\sigma_{k l}^{d}}\right)^{2}
$$

where $y_{k l}^{d}$ represents d data points for each observable k at time points $t_{l} \cdot \sigma_{k l}^{d}$ are the corresponding measurement errors and $y_{k}\left(\theta, t_{l}\right)$ the $k^{t h}$ observable as predicted by parameters θ for time point t_{l}.
To construct a corresponding score from the same parameter set for pDusk and pDawn we used the weighted means approach accordingly:

$$
\frac{\zeta_{u}+\zeta_{a}}{2}
$$

where ζ_{u} represents the score of a parameter set for pDusk and ζ_{a} the corresponding score of the same parameter set for pDawn.

Light On - Optogenetic Tool

Figure 1: Detailed pDusk/ pDawn system design including all parameters. Where ydd: Yf1 homodimer in dark-dark state, yDL/LD: lumped Yf1 homodimer in both dark-light (DL) and light-dark (LD) state, y_{LL} : Yf1 homodimer in light-light state, j_{i} : inactive form of FixJ (mRNA stage of FixJ is lumped), j_{a} : active form of $\mathrm{FixJ}, \mathrm{cI}_{\mathrm{m}}$: lambda phage inhibitor $m R N A, \mathrm{cI}_{\mathrm{p}}$: lambda phage inhibitor protein, $\mathrm{RFP}_{\mathrm{m}}$: mRNA form of Red Fluorescent Protein (RFP), and $\mathrm{RFP}_{\mathrm{p}}$: protein form of RFP.

In Figure 1 we show the pDusk (left) and pDawn (right) system with all parameters included. The outcome of the parameter estimation procedure and their meaning can be found in Table 1. All equations describing the systems are given in the equations 1-7 (pDusk) and 8-11 (pDawn).

1. $\frac{d y_{D D}}{d t}=k_{1}+2 \cdot k_{2} \cdot y_{D L, L D}-2 \cdot\left(N \cdot k_{3}\right) \cdot y_{D D}-\beta_{1} \cdot y_{D D}$
2. $\quad \frac{d y_{D L L D}}{d t}=2 \cdot\left(N \cdot k_{3}\right) \cdot y_{D D}+2 \cdot k_{2} \cdot y_{L L}-2 \cdot k_{2} \cdot y_{D L, L D}-2 \cdot\left(N \cdot k_{3}\right) \cdot y_{D L, L D}-\beta_{2} \cdot y_{D L, L D}$
3. $\frac{d y_{L L}}{d t}=2 \cdot\left(N \cdot k_{3}\right) \cdot y_{D L, L D}-2 \cdot k_{2} \cdot y_{L L}-\beta_{3} \cdot y_{L L}$
4. $\frac{d j_{i}}{d t}=k_{4}+k_{5} \cdot j_{a}-\beta_{4} \cdot j_{i}$
5. $\frac{d j_{a}}{d t}=k_{6} \cdot y_{D D} \cdot j_{i}-\beta_{5} \cdot j_{a}$
6. $\frac{d R F P_{m}}{d t}=\frac{V_{\max } \cdot j_{a}}{K_{m}+j_{a}}-\beta_{6} \cdot R F P_{m}$
7. $\frac{d R F P_{p}}{d t}=k_{7} \cdot R F P_{m}-\beta_{7} \cdot R F P_{p}$
8. $\frac{d c I_{m}}{d t}=\frac{V_{\max } \cdot j_{a}}{K_{m}+j_{a}}-\beta_{8} \cdot c I_{m}$
9. $\frac{d c I_{p}}{d t}=k_{8} \cdot c I_{m}-\beta_{9} \cdot c I_{p}$
10. $\frac{d R F P_{m}}{d t}=k_{9} \cdot \frac{1}{1+\left(\frac{c l_{p}}{K_{d}}\right)^{2}}-\beta_{6} \cdot R F P_{m}$
11. $\frac{d R F P_{p}}{d t}=k_{7} \cdot R F P_{m}-\beta_{7} \cdot R F P_{p}$

Table 1: Parameter explanation and values of outcome of parameter estimation pDusk/ pDawn.

Parameter	Value	Description
\mathbf{k}_{1}	$2.6921 \frac{\mu \mathrm{~mol}}{h}$	production rate of YDD
\mathbf{k}_{2}	$0.0008 \frac{1}{h}$	relaxation rate of YDL,LD and YLL. We assumed a search space for \mathbf{t} of $5900 \pm \mathbf{2 5} \mathbf{s}$ based on data from Möglich et al. (2009). This was mathematically transformed to $k_{2}=\frac{\log (2)}{\tau} \cdot 3600 \frac{s}{h}$.
\mathbf{k}_{3}	$0.4219 \frac{\mathrm{~m}^{2}}{\mu \mathrm{~mol}}$	conversion cross-section σ of light intensity activated production rate of YDL,LD and YLL. The search space for this parameter was defined as $1,000 \pm 250$ in Klose et al. (2015) and Rausenberger et al. (2010).
$\boldsymbol{\beta}_{1}$	$0.3049 \frac{1}{h}$	degradation rate of YDD
$\boldsymbol{\beta}_{2}$	$0.8406 \frac{1}{h}$	degradation rate of YDL,LD
$\boldsymbol{\beta}_{3}$	$0.1477 \frac{1}{h}$	degradation rate of YLL
k4	$0.2040 \frac{\mu \mathrm{~mol}}{h}$	production rate of $\mathbf{j}_{\mathbf{i}}$
k_{5}	$2.1623 \frac{1}{h}$	de-phosphorylation rate of $\mathbf{j a}^{\text {a }}$
β_{4}	$0.5205 \frac{1}{h}$	degradation rate of $\mathbf{j}_{\mathbf{i}}$
\mathbf{k}_{6}	$2.0838 \frac{1}{\mathrm{~h} \times \mu \mathrm{mol}}$	production rate of j_{a} depending on the concentration of YDD and j_{i}
β_{5}	$0.6615 \frac{1}{h}$	degradation rate of $\mathbf{j} \mathbf{a}$
$\mathbf{V}_{\text {max }}$	$2.9063 \frac{\mu \mathrm{~mol}}{h}$	$\mathbf{V}_{\text {max }}$ of production rate of $\mathrm{RFP}_{\mathbf{m}}$ based on $\mathrm{j}_{\mathbf{a}}$
$\mathbf{K}_{\mathbf{M}}$	$0.7130 \mu \mathrm{~mol}$	$\mathrm{K}_{\mathbf{M}}$ of production rate of $\mathrm{RFP}_{\mathbf{m}}$ based on $\mathrm{ja}_{\mathbf{a}}$
β_{6}	$2.0224 \frac{1}{h}$	degradation rate of $\mathrm{RFP}_{\mathbf{m}}$
k7	$0.0460 \frac{1}{h}$	translation rate from $\mathrm{RFP}_{\mathbf{m}}$ to $\mathrm{RFP}_{\mathbf{p}}$
$\boldsymbol{\beta}_{7}$	$0.2903 \frac{1}{h}$	degradation rate of RFPp
$\boldsymbol{\beta}_{8}$	$1.1579 \frac{1}{h}$	degradation rate of lambda phage inhibitor RNA ${ }_{\mathbf{m}}$
k_{8}	$3.8073 \frac{1}{h}$	production rate of $\mathrm{cI}_{\mathbf{p}}$ depending on $\mathrm{cI}_{\mathbf{m}}$
$\boldsymbol{\beta 9}$	$0.6563 \frac{1}{h}$	degradation rate of cI_{p}
k9	$0.9920 \frac{\mu \mathrm{~mol}}{h}$	maximal production rate of $\mathrm{RFP}_{\mathbf{m}}$
K_{D}	$0.1384 \mu \mathrm{~mol}$	dissociation constant of $\mathbf{c I}_{\mathbf{p}}$ at RFP $_{\mathbf{m}}$ promoter. The Hill coefficient was chosen to be 2 as the CI_{p} regulated promoter BBa_R0051 has $\mathbf{2}$ binding sites for CI_{p}.

Light On, BeeT Off - Optogenetic Kill Switch

In Figure 2 we show the pDusk + const. mazF (left) and pDawn + const. mazE (right) system with all parameters included. The outcome of the parameter estimation procedure and their meaning can be found in Table 2. All equations describing the systems are given in the equations 12 - 16 (pDusk + const. mazF) and $17-23$ (pDawn + const. mazE).

Figure 2: Detailed system design of pDusk + constitutive mazF and pDawn + constitutive mazE including all parameters.
12. $\frac{d e_{m}}{d t}=\left(\frac{V_{\max } \cdot j_{a}}{K_{M}+j_{a}}\right)-\beta_{10} \cdot e_{m}$
13. $\frac{d e_{p}}{d t}=k_{14} \cdot e_{m}+k_{10} \cdot(2 \cdot e f)-k_{11} \cdot\left(2 \cdot\left(e_{p}\right)^{2}\right) \cdot\left(f_{p}\right)^{4}-\beta_{11} \cdot e_{p}$
14. $\frac{d f_{m}}{d t}=k_{12}-\beta_{12} \cdot f_{m}$
15. $\frac{d f_{p}}{d t}=k_{13} \cdot f_{m}+k_{10} \cdot(4 \cdot e f)-k_{11} \cdot\left(e_{p}\right)^{2} \cdot\left(4 \cdot\left(f_{p}\right)^{4}\right)-\beta_{13} \cdot f_{p}$
16. $\frac{d e f}{d t}=k_{11} \cdot\left(e_{p}\right)^{2} \cdot\left(f_{p}\right)^{4}-k_{10} \cdot e f-\beta_{14} \cdot e f$
17. $\frac{d c I_{m}}{d t}=\left(\frac{V_{\max } \cdot j_{a}}{K_{M}+j_{a}}\right)-\beta_{8} \cdot c I_{m}$
18. $\frac{d c I_{p}}{d t}=k_{8} \cdot c I_{m}-\beta_{9} \cdot c I_{p}$
19. $\frac{d f_{m}}{d t}=k_{9} \cdot\left(\frac{1}{1+\left(c \frac{I_{p}}{K_{d}}\right)^{2}}\right)-\beta_{12} \cdot f_{m}$
20. $\frac{d f_{p}}{d t}=k_{13} \cdot f_{m}+k_{10} \cdot(4 \cdot e f)-k_{11} \cdot\left(e_{p}\right)^{2} \cdot\left(4 \cdot\left(f_{p}\right)^{4}\right)-\beta_{13} \cdot f_{p}$
21. $\frac{d e_{m}}{d t}=k_{12}-\beta_{10} \cdot e_{m}$
22. $\frac{d e_{p}}{d t}=k_{14} \cdot e_{m}+k_{10} \cdot(2 \cdot e f)-k_{11} \cdot\left(2 \cdot\left(e_{p}\right)^{2}\right) \cdot\left(f_{p}\right)^{4}-\beta_{11} \cdot e_{p}$
23. $\frac{d e f}{d t}=k_{11} \cdot\left(2 \cdot e_{p}\right) \cdot\left(4 \cdot f_{p}\right)-k_{10} \cdot e f-\beta_{14} \cdot e f$

Table 2: Parameter explanation and values of outcome of parameter estimation mazEF.

Parameter	Set 1	Set 2	Description
β_{10}	$196.0000 \frac{l}{h}$	$873.0000 \frac{l}{h}$	degradation rate of e_{m}
k_{14}	$1.4312 \frac{1}{h}$	$0.7103 \frac{l}{h}$	production rate from e_{m} to e_{p}
β_{11}	$0.3028 \frac{l}{h}$	$0.0244 \frac{l}{h}$	degradation rate of e_{p}
k_{10}	$2.2664 \frac{l}{h}$	$0.2564 \frac{l}{h}$	dissociation rate of complex ef (lumped/ simplified)
k_{11}	$0.7838 \frac{1}{\mu m o l^{5} \cdot h}$	$0.1827 \frac{1}{\mu m l^{5} \cdot h}$	rate of ef-complex formation (lumped/ simplified - this is why the unit has a $\left.{ }^{2}\right)$ k_{12}
β_{12}	$0.0188 \frac{\mu \mathrm{~mol}}{h}$	$0.0847 \frac{\mu \mathrm{~mol}}{h}$	production rate of f_{m} based on constitutive promoter
k_{13}	$0.6545 \frac{l}{h}$	$1.1927 \frac{l}{h}$	degradation rate of f_{m}
β_{13}	$0.7383 \frac{l}{h}$	$1.9110 \frac{l}{h}$	degradation rate of e_{m}
β_{14}	$1.8231 \frac{l}{h}$	$0.5894 \frac{l}{h}$	degradation of complex ef

