

Made by: iGEM Technion 2016

 iGEM TU Eindhoven 2016

Rosetta Guide for
the iGEM beginner

2

Table of contents

About this guide ___ 3

About Rosetta ___ 4

Do you need a local installation of Rosetta? _______________________________ 5

Online Services ___ 5

Getting Rosetta __ 6

Before you start __ 7

What do you need? __ 7

Supporting software __ 7

Structure Databases ___11

I want to do X ___13

Add an unknown residue to my simulations ___________________________13

Preparing structures for use in Rosetta ________________________________13

Finding important Residues for a protein binding interface _____________13

Designing an orthogonal binding interaction __________________________14

Design of a binding pocket/interface for a chemical compound ______14

Protocols ___15

Cleaning your pdb __15

Adding unknown residues ___15

Relax ___16

Backrub __17

Computational alanine scanning ____________________________________18

Point mutant scanning ___20

Extensive remodeling __23

Design of Ligand Binding Sites __23

Tips and tricks ___24

Rosetta Energy - how to filter results ______________________________________25

Scoring Proteins ___25

Important links, support and more data ___________________________________31

Thanks and Acknowledgements ___32

iGEM Technion 2016 ___32

iGEM TU Eindhoven 2016 ___32

3

About this guide

This guide was written by iGEM Technion 2016 and iGEM TU Eindhoven 2016 to

be used as a starting point for new users of the Rosetta software for protein

modeling and design.

This document is in no way a complete guide to Rosetta but rather an

organized collection of all the important information we came across while

using this powerful tool – articles, protocols, forum posts and our own

personal experience.

We hope future iGEM teams will find this guide useful during their very first

steps with protein modeling and design using Rosetta.

4

About Rosetta

Rosetta is a software suite for macromolecular modeling. It was initially

developed to predict protein folding and has since been greatly expanded

to include dozens of other options. As of 2016 it has been used to predict

protein structures, perform protein – protein and protein – ligand docking,

design novel proteins and redesign existing ones just to name a few.

Today, Rosetta algorithms are able to predict, design and analyze almost

every set of biomolecular systems: proteins, RNA, DNA, Peptides, small

molecules and non-canonical amino acids.

All of the above is available to the end user in two ways:

○ A set of nearly 300 premade functions that can be used to perform

specific tasks.

○ Two frameworks, PyRosetta and RosettaScripts, which allow

customization and creation of protocols for yet undefined tasks.

It is worth noting that successfully designing a protein in Rosetta does not

guarantee its successful function in vivo. That is the case with every

biological computational design. Testing your designs is a crucial part of

the work

5

Do you need a local installation of Rosetta?

Given the large scale of the "typical" iGEM project, almost every team can

find themselves needing one or more functions available in Rosetta. In most

cases, if the task is simple enough (structure or docking predictions for

example) it can be completed without directly using the software, saving

both precious time and resources.

Online Services

These servers were developed to give the biological community the ability to

use the most common Rosetta functions easily and freely without the need to

understand every minor detail in the program.

○ ROSIE – Rosetta Online Server that Includes
Everyone http://rosie.rosettacommons.org/
ROSIE is a web framework for Rosetta applications run by

RosettaCommons. It provides users access to computer cluster

resources and a common user interface for simple use of several

Rosetta protocols. As of September 2016, 18 Rosetta protocols can be

run in ROSIE.
○ ROBETTA – Full chain Protein Structure Prediction

Server http://robetta.bakerlab.org/
ROBETTA is a full chain structure prediction server run by the University

of Washington. Aside from structure prediction and 3d modeling,

ROBETTA offers fragment library generation (pieces of experimentally

determined structures that Rosetta uses in the structure prediction

process) and interface Alanine scanning (estimate the energetic

contribution to the binding energy provided by each residue at a

protein-protein interface).
○ FlexPepDock – High resolution modeling of peptide-protein

interactions http://flexpepdock.furmanlab.cs.huji.ac.il/
FlexPepDock is a high resolution peptide-protein docking server

run by the University of Jerusalem.
○ Phyre2 - Protein Homology/Analogy Recognition

Engine

http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi

?id=index
Phyre2 is a protein structure prediction service run by Imperial College

London. It is free for non-commercial users and extremely easy to use.

Although it is not based on Rosetta, it provides fast and reliable results

Before diving into the official documentation (or the rest of this guide) to

figure out how to run Rosetta, check the following online services to see if

your task can be performed automatically.

http://rosie.rosettacommons.org/
http://robetta.bakerlab.org/
http://flexpepdock.furmanlab.cs.huji.ac.il/
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index

6

and is considered one of the best structure prediction services online.

(Only for proteins with less than 2000 amino acids)

Getting Rosetta

An academic license for Rosetta is freely available, in order to receive this

license you have to fill in an application form at the site of the University of

Washington, they will then evaluate whether you are suitable for an

academic license:

https://els.comotion.uw.edu/express_license_technologies/rosetta

Be sure to check whether your institution/organisation doesn’t

already have an (academic) license before you apply, as the

evaluation might take a while.

Unlike most windows programs, Linux and Mac do not work with

executables, so you will need to compile the software yourself, if you’re

using your institutions cluster it is also possible that, Rosetta is already

installed, in which case you can skip this step.

In order to compile Rosetta and use it you will need the Rosetta source

code, Python and the Scons compiler.

Using your license, you can download the Rosetta source

code at:

https://www.rosettacommons.org/software/license-and-

download

To Install Rosetta, you must first download and install Scons (Software

CONStructor) which will build the Rosetta installation automatically. Scons

requires Python 2.4 or above (Python 3 currently not supported).

Python is freely available at: https://www.python.org/

Scons is freely available at: http://scons.org/

Rosetta’s Documentation for compiling and testing for the software and

troubleshooting is available at:

https://www.rosettacommons.org/docs/latest/build_documentation/Build-

Documentatio n

If you cannot install one or more of these softwares because you have

no access/administrative rights to parts of a cluster, consider using steps

as defined in this
forum post: https://gist.github.com/rmcgibbo/4950848

https://els.comotion.uw.edu/express_license_technologies/rosetta
https://www.rosettacommons.org/software/license-and-download
https://www.rosettacommons.org/software/license-and-download
https://www.python.org/
http://scons.org/
https://www.rosettacommons.org/docs/latest/build_documentation/Build-Documentation
https://www.rosettacommons.org/docs/latest/build_documentation/Build-Documentation
https://www.rosettacommons.org/docs/latest/build_documentation/Build-Documentation
https://gist.github.com/rmcgibbo/4950848

7

Before you start

What do you need?

If your task does require a local version of Rosetta, the first thing you need to

secure is substantial computing power. The simpler tasks, such as structure

prediction or energy analysis, can probably run on a simple PC but it is time

consuming. The heavier tasks, such as protein design, require large

computing resources so use of a computer cluster is extremely

recommended.

Currently, Rosetta runs only on UNIX based systems – Linux/Mac.
Basic knowledge of how to work and navigate in these systems is a must.
How to use Rosetta on a windows computer is documented in the chapter -
Necessary software.

A few linux guides to get started

 A short youtube playlist introducing navigation and basic commands:

https://www.youtube.com/watch?v=uJ39gAaeJsw&list=PLRUeXoFmW

O_3CwGQvTNV92U G3HG9VXDK2&index=1

 Online tutorials:

https://www.digitalocean.com/community/tutorials/basic-linux-

navigation-and-file-mana gement

Supporting software

The input/output files you'll be working with are mainly PDB (Protein Data

Bank) files for protein structures and mol2/smiles/sdf files for chemical

ligands.

PDB files contain both the sequence and the 3D structure of the protein.

Some proteins have more than one PDB file, each one showing the protein

in a different conformation, for example bound and unbound states. PDB

files may also sometimes contain chemical ligands which can be isolated

from the file and saved separately if needed.

Ligand files contain the chemical structure and orientation of the ligand

atoms and are similar to PDB files in purpose.

A dedicated software is needed to open and view all these file types

correctly and perform actions on them. The two most popular programs to

handle PDB and ligand files files are Pymol and Chimera UCSF.

https://www.youtube.com/watch?v=uJ39gAaeJsw&list=PLRUeXoFmWO_3CwGQvTNV92UG3HG9VXDK2&index=1
https://www.youtube.com/watch?v=uJ39gAaeJsw&list=PLRUeXoFmWO_3CwGQvTNV92UG3HG9VXDK2&index=1
https://www.youtube.com/watch?v=uJ39gAaeJsw&list=PLRUeXoFmWO_3CwGQvTNV92UG3HG9VXDK2&index=1
https://www.digitalocean.com/community/tutorials/basic-linux-navigation-and-file-management
https://www.digitalocean.com/community/tutorials/basic-linux-navigation-and-file-management
https://www.digitalocean.com/community/tutorials/basic-linux-navigation-and-file-management

8

Chimera UCSF

Chimera is a software for graphical display of proteins and small molecules. It

can open any file type from online protein or ligand databases, present the

3D structure (if it exists), present and compare sequences and perform

various other tasks like recording videos of proteins in motion (i.e. changing

conformation or spinning to present them from all angles), running BLAST on

a desired sequence and more.

The structure of the native E. Coli Tar chemoreceptor which is the basis of iGEM team
Technion 2016’s project, As presented in Chimera UCSF

Chimera is available for free at:
https://www.cgl.ucsf.edu/chimera/
The site also offers extensive documentation on the
software.

For a quick start guide, you can watch the following short playlist:

https://www.youtube.com/playlist?list=PLHib7JgKNUUeTZONxd0h0WBiZz

AJmXmva

https://www.cgl.ucsf.edu/chimera/
https://www.cgl.ucsf.edu/chimera/
https://www.youtube.com/playlist?list=PLHib7JgKNUUeTZONxd0h0WBiZzAJmXmva
https://www.youtube.com/playlist?list=PLHib7JgKNUUeTZONxd0h0WBiZzAJmXmva

9

PyMol

PyMol is an open source molecular visualisation software that, as the name

suggests, is integrated with Python, meaning that elaborate programs can

be written to display results on your 3D structure with Python:

The Results of a computational alanine scan of iGEM TU Eindhoven 2016, showing the

important residues on a T14-3-3 dimer and a dimerized CT52, darker colors indicate a

stronger change in G values, and thus show more important residues.

Besides custom visualisation pyMol can perform various other tasks like

creating a PDB from scratch, moviemaking, determining neighbouring

residues, and much more. An extensive documentation on how to use

PyMol is also available in the form of a wiki.

OpenBabel

OpenBabel is a chemical toolbox which has many applications in analysing

and converting chemical data, one of these applications is to convert a PDB

of a chemical ligand to a .mol2 file, which in turn Rosetta can turn into the

files necessary for its simulations. You can get OpenBabel and find support for

it in the official website.

BCL

BCL - the Biology and Chemistry Library Project is a C++ programming library

designed to simulate biological molecules and chemicals. Certain Rosetta

protocols demand use of BCL (The design of ligand binding sites presented

later in this document for example). BCL is free for academic users and a

licence for it can be obtained in the Meiler Lab website.

http://pymolwiki.org/index.php/Main_Page
http://openbabel.org/wiki/Main_Page
http://www.meilerlab.org/servers/bcl-academic-license

10

Virtualbox

If you have no access to a UNIX based system and instead have to use a

windows PC, you need to take some extra steps to install and use Rosetta.

Since Rosetta runs only on UNIX based systems, it is necessary to either dual

boot your computer to have both Windows and Linux, or create a virtual PC

which runs Linux. Such a virtual PC can be created using VirtualBox.

VirtualBox is available for free at: https://www.virtualbox.org/

In order to create your virtual PC you need to

download the OS:

http://www.ubuntu.com/download

Documentation on how to create a virtual PC is

available at:

https://www.virtualbox.org/manual/ch01.html#id

m267

Another option for windows is the alternative software of PyRosetta.

PyRosetta is an interface for Rosetta written in Python, which was made to

make Rosetta modeling available for a broader public, since Python a

widely used programming language. On the official PyRosetta website,

www.pyrosetta.org, the software is free to download if you are from an

academic institution. If you start with PyRosetta, it is recommended to

download the graphic molecule visualization software PyMOL (in my

institution it was already available).

These tutorials start off by introducing PyMOL, and guide the user step-by-

step into using PyRosetta. If you know a bit of Python, the tutorials are easy.

And even if you don’t, getting to know a bit of Python is not the worst idea

because it is a very simple and intuitive programming language

(documentation of Python can be found onhttps://docs.python.org/3/) .

However, we can imagine that the advantage of using PyRosetta over

Rosetta is limited as long as you don't know any Python.

RECOMMENDATIONS

Most computers have trouble running two 64-bit operating systems at the

same time, so it is recommended you download a 32-bit operating system.

Rosetta is a reasonably large software and you will need quite a bit of
space to store all your data and generated PDBs, so we recommend
creating a virtual drive with at least 60 GB of disk space.

Adding multiple processors is also recommended.

https://www.virtualbox.org/
http://www.ubuntu.com/download
https://www.virtualbox.org/manual/ch01.html#idm267
https://www.virtualbox.org/manual/ch01.html#idm267
https://dlwpowa.tue.nl/owa/redir.aspx?C=VcpK8Z0K9jqP48gVzWJl4AZviMZt8cDZmLYjPr7vhyxUT307o-fTCA..&URL=http%3a%2f%2fwww.pyrosetta.org
https://dlwpowa.tue.nl/owa/redir.aspx?C=VcpK8Z0K9jqP48gVzWJl4AZviMZt8cDZmLYjPr7vhyxUT307o-fTCA..&URL=http%3a%2f%2fwww.pyrosetta.org
https://dlwpowa.tue.nl/owa/redir.aspx?C=oKw_iIbjvEUX13qMV1RPH-Znrnzhj7xuQw2iTD9uwmC0sH87o-fTCA..&URL=https%3a%2f%2fdocs.python.org%2f3%2f

11

Structure Databases

Generally, every protocol in Rosetta require a protein structure or sequence

file as a basis to work with. These files can be obtained freely from several

online databases.

Protein Data Bank

Protein Data Bank (PDB) is the main database for three dimensional structures

of biological molecules. The vast majority of data was obtained over the

course of years using X-ray crystallography or NMR spectroscopy and

submitted by scientists from around the world.

The data is accessible for free via one of three sites:
● PDBe
● PDBj
● RCSB PDB

A high resolution structure (better than 2 Å) obtained using X-ray

crystallography is the

best input possible and can used with Rosetta with very few preparations. A

structure with lower resolution, an NMR or a homology structure will make

your modeling less effective and the results less accurate.

Be sure to search for the best possible inputs available before starting your

work.

UniProt

Universal Protein Resource (UniProt) is the main resource for protein

sequence and functional information. It contains data about thousands

of proteins from hundreds of different organisms. All the data is accessible

for free.

each protein page presents the amino acid sequence and a link to the

relevant literature from which the information was taken. If a 3D structure of

a protein exists, there will also be a link to the relevant entry on PDB.

UniProt

Since UniProt contains a massive amount of proteins, and is easier to

navigate, it is recommended to start your search from it and find the relevant

entries on PDB from the links on UniProt.

http://www.ebi.ac.uk/pdbe/node/1
http://pdbj.org/
http://www.rcsb.org/pdb/home/home.do
http://www.uniprot.org/

12

ZINC15

Zinc is a free database of commercially available chemical

compounds (Ligands). It contains over 100 million compounds in ready

to dock 3D formats - sdf/smiles/mol2

Aside from the chemical information and ligand files, each entry contains

links to several suppliers from which the compound can be purchased.

ZINC15

http://zinc15.docking.org/substances/home/

13

I want to do X

When you are trying to design proteins with Rosetta you often know exactly

what you want to achieve, but not how to achieve it. This chapter contains

some of the common goals and goals we have personally strived for when

using Rosetta and elaborates how to achieve these.

Add an unknown residue to my simulations

Sometimes your goal is to simulate the interaction between proteins and a

non standard ligand/chemical compound, like sulfate or Fusicoccin, in this

case you will need to create a
.params file for your ligand to tell Rosetta how to work with it.

1. If your ligand is present in the PDB, extract it and generate a .mol2

file using OpenBabel
2. Make a .params file using Rosettas mol_to_params.py
3. Add to simulations using command -extra_res_fa <.params files>

Preparing structures for use in Rosetta

input structures from PDB databases are rarely immediately suitable for use in

Rosetta, the PDB has to be relaxed into the Rosetta scoring function to

prevent steric clashes and produce more accurate results. This can be done

with the Relax application. If your protein is flexible or contains flexible parts, it

is recommended to also do a Backrub simulation.

1. Cleaning
2. relax simulation
3. Backrub simulation

Finding important Residues for a protein binding interface

Not all residues in a protein are relevant for the binding interactions between

2 (or more) proteins, how relevant a residue can be seen with alanine

scanning: With alanine scanning you mutate a residue to alanine, which is a

relatively non-interactive amino acid, and determine the change of the free

Gibbs energy (G), the larger the change*, the more relevant the residue.

Alanine scanning can be done in the lab but also in silico (computational),

which is far more cheap and fast, but does give less certainty about the

results.

*Note that a positive change indicates that the binding interaction

weakens, and a negative change the binding interaction

strengthens.

1. Prepare the structure for use in Rosetta
2. Computational alanine scan

14

Designing an orthogonal binding interaction

Designing an orthogonal protein pair

means introducing mutations in both

interacting proteins and having no

crosslinking between the wildtype pair

and your designed pair (e.g. wildtype

protein A only binds to wildtype

protein B and designed protein A only

to designed protein B, see figure).

Designing an orthogonal pair is

commonly used to ensure that your

designed protein only interacts

with the proteins you designed it to interact with and no others. iGEM team

Eindhoven 2016 has designed these interactions to turn a homodimeric

scaffold protein into a heterodimeric and a tetrameric scaffold protein. They

have also written a more extensive protocol for the design of an orthogonal

pair, including example scripts. This protocol is available here.

1. prepare the structure for use in Rosetta
2. Find important residues
3. Mutate protein A (point mutant scanning)
4. Compensate by mutating protein B (point mutant scanning)
5. check orthogonality (point mutant scanning)
6. extensive remodeling

Design of a binding pocket/interface for a chemical compound

Natural ligand binding proteins bind molecules that are necessary for the

cell or are harmful to it in some way (i.e. to recognize danger), this implies

that that the majority of chemical ligands are not recognized by any

protein in nature.

Natural proteins can be redesigned computationally to bind different

ligands. During the design process the expected binding pocket is mutated

and the binding energy is re-evaluated to assess whether binding is more

probable.

The redesign protocol was written by: Rocco Moretti, Brian J. Bender, Brittany

Allison and Jens Meiler from Meiler lab, Vanderbilt University.

This Protocol is available here.

Please refer to the Protocols section of this guide for tips and a general

outline of the protocol.

iGEM Technion 2016 have written and optimized scripts for every section of

the protocol which are available here

http://2016.igem.org/wiki/images/a/a4/T-TU-Eindhoven--Rosette_Protocol.pdf
http://link.springer.com/protocol/10.1007%2F978-1-4939-3569-7_4
http://2016.igem.org/Team:Technion_Israel/Software

15

Protocols

The protocols that are elaborated here are linked to the steps in the

previous chapter. Note that these protocols are examples and

recommendations, and might be incomplete for the simulation you want to

run. Links to The official Rosetta documentation will be available for each

protocol.

Cleaning your pdb

a pdb file has to be cleaned before use in Rosetta, because it has

information Rosetta doesn’t use and could even hinder your simulations.

Materials

● input pdb

Protocol

● if your pdb contains a wanted ligand, use:

<path_to_Rosetta>/main/source/src/apps/public/relax_w_allatom_cst

/clean_pdb _keep_ligand.py <input pdb> - ignorechain
● otherwise use: <path_to_Rosetta>/tools/protein_tools/clean_pdb.py

<input pdb>

this outputs a pdb that can be used for further preparation, note that this

renumbers the residues in your pdb.

Adding unknown residues

Often you want your protein to react to a chemical compound or another
nonstandard residue which Rosetta is unfamiliar with, in this case you will
need to add a file which contains information about your ligand to your
simulations. Such a file can be found in structure databases like ZINC15,or
in case your ligand is already present in the pdb, you can extract it from
the pdb.

Materials

● OpenBabel software package
● pdb containing ligand

OR
● ligand file (.smiles,.mol2,.sdf)

Protocol

● extract file from pdb:
○ make sure your ligand is in a separate chain from the rest of the

pdb
○ use: grep ‘<residue> <chain>’ <pdb> > <residue>.pdb

● making a Rosetta compatible file:

http://zinc15.docking.org/substances/home/

16

○ generate .mol2 file:
■ babel <residue>.pdb <residue>.mol2

○ generate .params files:
■ <path_to_Rosetta>/main/source/scripts/python/public/

molfile_to _params.py -n <res> -p <res> <residue>.mol2
■ <res> has to be the same 3-letter code as the code

the ligand is represented by in the input pdb.

To use the residue in your simulations, add the -extra_res_fa <res>.params flag

to your flag file.

Relax

In order to use your input PDBs in Rosetta the first need to be ‘relaxed’ into the

Rosetta score function to reduce minor steric clashes in the PDB. Not relaxing

the PDB before using it for other simulations will almost certainly give

inaccurate results.

Materials

● Input PDB
● (optional) .params files for unknown residues

Protocol

● create a flags file (a file that contains commands for the simulation)
○ Required flags:

■ -database <path to database>
■ -s <pdb> OR -l <list of pdbs>
■ - nstruct <n> #n should be at least 10

○ Recommended flags:

■ -relax:constrain_relax_to_start_coords
■ -relax:coord_constrain_sidechains
■ -relax:ramp_constrain false
■ -ex1
■ ex2
■ -use_inut_sc
■ -fli=_HNQ
■ no_optH false
■ mute basic core

○ for more options and flags see the official documentation.
● run the simulation

○ <path_to_Rosetta>/main/source/bin/relax.<OS>gccreleas

e @flags > <outputfile>

Post processing

The output of this simulation will be:

● a set of generated pdbs
● a score.sc file
● <outputfile> which contains the information normally printed to the

terminal.

https://www.rosettacommons.org/docs/latest/application_documentation/structure_prediction/relax

17

The most important files are the pdbs and the score file, the output file can

be used to find errors in your simulation. The score file contains the scores of

each generated pdb, use the best pdbs (>2 is recommended) to continue

your work. Note that a lowerscore means a structure is more stable, however,

this does not necessarily means that it will perform the function you want it to.

Usually you determine your best pdbs on their total score, but in some case

other scores are more relevant, see chapter Rosetta energy - how to filter

results to see what all scores describe.

Backrub

In order to simulate backbone flexibility it is recommended to do a backrub

simulation before continuing towards getting results. If you only have

rigid/robust proteins to analyze you can skip this step. In the case that only

some of your proteins are robust, you should run the simulation, but excluding

the residues of the rigid proteins is recommended.

In a backrub simulation the backbones of residues are rotated respective to

their neighbours in order to improve the score of the protein, and thus

finding a more stable structure. It is also possible to repack (= change

orientation) the side chains and introduce mutations using a resfile.

It is also possible to submit your pdb to the RosettaBackrubserver, however
this limits your control over the simulation significantly, so running it on your
own machine/cluster is recommended.

Materials

● Relaxed pdbs
● (optional) .params files
● (optional) resfile

Protocol

● create a flags file
○ required flags:

■ -database <path to database>
■ -s <pdb> or -l <pdblist>

■ -nstruct <n> # n > 10 recommended
■ -backrub:ntrials <n> #n = 10000 recommended

■ -in:file:fullatom

○ recommended flags:
■ -ex1
■ -ex2
■ -ex3
■ -ex4
■ -extrachi_cutoff 0

■

(Optional) -resfile

<resfile> #for repacking and mutating

https://kortemmelab.ucsf.edu/backrub/cgi-bin/rosettaweb.py?query=index

18

residues, see the official documentationon how to

construct

 resfiles

■

(optional) -pivot_residues <resnr1> <resnr2>

etc.

#determi

ne

which residues to backrub (default is all

residues)
■ mute basic core

○ for more options and flags see the official documentation.

Post-processing

the post-processing is similar to the post-processing of the relax simulation,

however it outputs 2 pdbs per input pdb, namely the last generated and

the pdb that scored lowest.

Computational alanine scanning

In order to determine the important residues in a binding interaction an
alanine scan can be performed, this can be done on a local version of
Rosetta, but the Robettaserver provides an excellent service for this
application, therefore we recommend simply submitting your PDB to this
server. We strongly recommend submitting multiple pdbs of your structure,
as results may differ slightly from pdb to pdb

Materials

● pdbs
● (optional) mutations list

Protocol

● if you have knowledge/suspicion on which residues are important for

the binding of your proteins, it is recommended to construct a

mutations list file, as this tells the server which residues to process, this

will make analyzing results easier and more consistent. If you do not

submit a mutations list, the server will automatically determine which

residues to process, and this may differ per pdb.
○ documentation on constructing a mutations list can be found

here
● identify binding partners by chain id
● fill in the submit form

Post-processing

The server outputs a bunch of files, of which the .results file is the most

important. The results file contains a line for each mutated residue. the

columns you should look at are pdb#, which tells you the residue number in

the submitted pdb, the chain id and the DDG(complex), these describe the

change in Gibbs free energy when the residue is mutated to alanine.

https://www.rosettacommons.org/docs/latest/rosetta_basics/file_types/resfiles
https://www.rosettacommons.org/docs/latest/application_documentation/structure_prediction/backrub
http://robetta.bakerlab.org/alascansubmit.jsp
http://robetta.bakerlab.org/data_formats.jsp#mutations
http://robetta.bakerlab.org/data_formats.jsp#mutations

19

We recommend that you visualize your results to make them easier to

understand and generally more presentable. This can be done in several

ways, for example in a heatmap (see below) or on the protein complex

itself (see chapter ‘Necessary software’ - PyMol).

Computational alanine scanning results of iGEM TU Eindhoven 2016 represented on a

heatmap.

20

Point mutant scanning

The point mutant scan application, as the name suggests, scans for point

mutants for given residues and determines the change of Gibbs free energy

the mutation causes. This scanning is a great way to design orthogonal

binding interactions:

you start by introducing mutations in one of the proteins (say protein A) to

destabilize the binding interaction. The highest positive changes mean the

largest increase in the G values and the weaker the binding affinity between

the mutated protein A and wildtype protein B, which is essential for the

orthogonality of your designed pair.

Next you want to find mutations in protein B that strengthen the binding
interaction with the mutatedprotein A, this is to ensure your orthogonal pair is
still functional. in this case the G values should decrease, preferably even
lower than the G values of your wildtype-wildtype binding interaction

Lastly, you need to check whether your mutated protein B does not/weakly
interact with your wildtypeprotein A, you can do this in the same way as in
the first step, but you mutate protein B instead of A.

Materials

● pdbs
● (optional but stronglyrecommended) mutations list

○ We recommend doing a computational alanine scan to

determine which residues to mutate, and you should mutate to

all amino acids except cysteine, because it forms disulfide

bonds, and proline, because the point mutant scan

application can not handle these correctly and could strongly

disturb the structure of your protein.
○ a mutations list can contain single and double point

mutations and is constructed as following.
■ <chain> <old AA> <residue number> <new AA>
■ for example:

 A E 19 R
 A E 19 R Q K 943 D

Protocol

● create a flags file
○ essential flags:

■ -database <path to database>
■ -s <pdb> or -l <pdblist>

■

-

output_mutant_structures

#Outputs pdbs that have a

change

 in

G values that passes a threshold, these output

pdbs are

necessary for the second

step

■

-

alter_spec_disruption_mo

de

#This makes the application

search

21

for destabilizing mutations instead of stabilizing ones,

note that

this is notreflected in the log file, so if this is set to true,

changes

in the energy that are negative should be positive and
vice versa.

○ recommended flags:
■ -ex1
■ -ex2
■ -use_input_sc
■ -flip_HNQ
■ -no_opth false
■ -ignore_unrecognized_res
■ -no_his_his_pairE
■ -ddG_cutoff #determines the threshold for mutated

structures to be approved (change should be below

threshold, default = -1)

■ -double_mutant_scan #allows use of double point

mutations
● run

/path/to/Rosetta/main/source/bin/pmut_scan_parallell.<OS>gc

crelease @flags > <logfile>

22

Post-processing

The output of the point mutant scan is a log file that contains, among

other things, the tested mutation and the resulting average change in

Gibbs free energy. As with computational alanine scanning we

recommend visualizing your results. for example:

Point mutant scan results of iGEM TU Eindhoven 2016. A) destabilizing

mutations in the CT52 residue numbers are shown along the y-axis, mutations

along the x-axis. B) destabilizing mutations in the T14-3-3 protein, shown

residue numbers and mutations are not on T14-3-3, but on the CT52 that the

mutations in the T14-3-3 compensate for. C) The energy difference between

the wildtype pair and mutated pair.

For the design of your orthogonal pair mutations should be chosen that are

very destabilizing in both A and B (dark red), but preferably blue or light

red in C in the figure above.

23

Extensive remodeling

After designing an orthogonal pair, or another reason, you might want to

remodel your pdb to more accurately predict the likely structure of your

mutated pair, Gregory T. Kapp et al. have written a protocol on how to to

such an extensive remodeling which is available in the SI of their article.

Design of Ligand Binding Sites

*Based on the article”Rosetta and the Design of Ligand Binding Sites” by

Rocco Moretti, Brian J. Bender, Brittany Allison and Jens Meiler. Available

here

The protocol which is presented in the article is thoroughly explained so this

section will not rewrite it, instead we will present a general outline of the

procedure with tips and clarifications about the different steps from

Technion iGEM’s experience.

Materials

● input PDB of a protein ligand binding site
● input mol2 file of a ligand of your choice
● OpenBabel
● BCL

Protocol

(*The number in brackets is the relevant step in the article)

● (3.1) relax the input PDB into Rosetta using the written command line
● (3.2) convert the small molecule file into SDF format using OpenBabel

○ in our experience, mol2 files perform best in this step but every

ligand file type (sdf,smiles) can be used.
○ A licence to use BCL is usually given for a week at first (and

can be extended when needed). Make sure your licence is

valid before running step 3.2.2
● (3.3) Identify the interaction pocket

○ This step is critical for a successful design and has to be done
manually, please refer to our designated guide for this step
which can be found here

● (3.4.1) Prepare a residue specification file
○ A resfile specifies which amino acids can be mutated for the

design and which should not be touched. The example file

given in the article works
Very well however if you want to customize the file, you can
refer to the documentationto learn about the various options.

● (3.4.2) Prepare a docking and design script
○ The docking and design script is the heart of the protocol,

performing the actual mutations on the protein. The script in

the article works very well, please refer to the article or to the

http://www.pnas.org/content/109/14/5277.long#ref-19
http://2016.igem.org/wiki/images/2/28/Step3.3-Place_the_ligand_into_the_protein.pdf
https://www.rosettacommons.org/manuals/archive/rosetta3.5_user_guide/d1/d97/resfiles.html

24

scripts provided by Technion iGEM 2016 if any problems arise

(most likely due to typos)
● (3.4.3) Prepare a design options file according to the article.
● (3.4.4) Run Rosetta using the command provided in the article. This is

the actual design step and should take some time to finish depending

on your computer and on your input files.
● (3.5) Filter designs according to the article.

○ When preparing the metric_threshold.txt and

metric_thresholds2.txt files which specify how to filter the results

please refer to the next section of this guide - Rosetta Energy
● (3.7) run the design protocol again on your filtered outputs several times

more

○ 3-5 runs of the protocol (which each running on the previous

one’s results) is a good start.

Tips and tricks
- You can sort your score files with the sort command. For example: sort

<score file> or sort -k5 score file if you want to sort by the fifth column.
- if you have unrecognized residues in your pdb but you do not want

them/ do not care about them, you can pass the -
ignore_unrecognized_res flag

- if residues go missing during your simulations, try passing the
-ignore_zero_occupancy false flag.

- if your pdb contains water you should either remove them, or pass the
-ignore_waters false flag.

For more information on our take on the modeling process and how we

used Rosetta visit our WIKI pages:

iGEM TU Eindhoven: http://2016.igem.org/Team:TU-Eindhoven

iGEM Technion Israel: http://2016.igem.org/Team:Technion_Israel

http://2016.igem.org/Team:TU-Eindhoven
http://2016.igem.org/Team:Technion_Israel

25

Rosetta Energy - how to filter results

At the end of your design or modelling run, you will likely have an output

library of results. This library can range from dozens to thousands of proteins

depending on your parameters. This makes the subject of filtering results an

extremely crucial part of any design process.

Filtering in Rosetta is done by scoring every aspect of the protein complex,

this includes bonding energy, interactions between amino acids of the same

protein, backbone angles, clashes with the ligand (if exists) and many more.

The scores are in arbitrary units of REU - Rosetta Energy Unit. After scoring the

parameters of the protein, you can select the proteins with the best possible

scores according to your desired parameter.

Scoring Proteins

The Rosetta energy function is a combination of physics-based and
statistics-based potentials. The actual process of scoring a protein file
is well documented and demonstrated in the official documentation
found here.

After scoring proteins you should have an output file similar to this:

The different parameters which are being scored are lacking in explanation,

so we will focus on them here. The following table is not complete but it

presents the majority of parameters available. Please read through it

carefully before deciding how to filter your results.

After scoring a protein file(s) you should have a file with the filetype: .sc. The

file should look similar to the above photo. You can open this file in Microsoft

Excel and perform calculations on the scores. Use the table below to choose

the parameters upon which you want to filter the results. For each

In many cases Rosetta can tell which proteins are more likely to fold properly

(this does not mean they will function the way you want them to). It is your

responsibility to give it the correct parameters for the filtering process. Correct

filtering can reduce your outputs from hundreds to dozens or less.

https://www.rosettacommons.org/demos/latest/tutorials/scoring/scoring#demo_basic-scoring

26

parameter select a threshold - a value such that any protein with a score

higher (or lower, depend on your configuration) than it is discarded.

The table lists some parameters with known universal values. If no good

universal values are known a good rule of thumb is to filter by sorting the

scores of each parameter from lowest to highest and selecting the top 25%

as a threshold for filtering (i.e dropping the highest 25% as lower results are

always better).

You can change the parameters and thresholds as you like depending on

how many results pass the filtering process and how many you want.

How to use this table: The table has three columns, The name of the

parameter, its biological or statistical meaning and universal good

values to filter by if it is known.

NAME OF PARAMETER WHAT IT MEANS GOOD VALUES (IF KNOWN)

TOTAL_SCORE Weighted average of all results (-2)*(number of residues in

 protein)

 Should not be positive.

CLASSICGRID_GRID_X Useful in docking protocols. The N/A

 energy of binding from the low

 resolution stage of the docking.

 (Use to see how well the low

 resolution stage ran)

TRANSFORM_ACCEPT_RATIO How well the low resolution Generally around 0.3 is ideal,

 Monte Carlo stage worked. It is

a
but anything that is not 0 or 1 is

 number between 0 and 1 and is ok. If 0 or 1 you need to

change

 provided as a diagnostic. how you’re doing the docking.

COORDINATE_CONSTRAINT How well the design fits the N/A

 coordinate constraints (atom A

 must be at coordinate x,y,z. This

is

 a parameter you choose during

the

 design)

FA_ATR The attractive portion of the N/A

 Lenard-Jones potential.Can be
 used to tell how good the

protein

 is packed

FA_REP The repulsive portion of the N/A

 Lenard-Jones potential.If high
 then there are clashes in the

 protein. Filtering designs which
 are high compared to the

average

 is recommended.

FA_DUN “Dunbrack energy” - a

statistical
80-150

https://en.wikipedia.org/wiki/Lennard-Jones_potential
https://en.wikipedia.org/wiki/Lennard-Jones_potential

27

 potential based on sidechain
 conformation preference

 assembled by Roland Dunbrack’s

 lab.It is protein only term.

FA_ELEC Coulombic electrostatic

potential.
N/A

FA_INTRA_REP The repulsive energy within N/A

 residues.

FA_PAIR Statistical residue-residue Negative results are ideal

 interaction potential. Very useful

 in protein-protein

interactions

FA_SOL Solvationterm. Useful

in

N/A

 protein-ligand
interactions with

 particularly

hydrophobic or

 hydrophilic ligands.

HBOND_BB_SC Hydrogen bonding

term between
N/A

 protein backbones

and sidechains.

HBOND_SC Hydrogen bonding

between
N/A

 different sidechains.

IF_X_FA_ATR The terms without

if_X_ are for

protein as a whole.

IF_X_FA_REP

The ones with if_X

are for the

interface of the

protein with
N/A

IF_X_FA_ELEC

sidechain X (usually

a ligand).

IF_X_FA_PARI (Normally interface is

defined to

be 5 Å from the

ligand)

IF_X_FA_SOL

INTERFACE_DELTA_X The energy of

interactions
N/A

 between the ligand

(chain X) and

 the protein

LIGAND_IS_TOUCHING_X 1 if ligand is close to

the protein, 0
Should be 1 in most cases.

 otherwise.

OMEGA How bad are the

protein backbone
N/A

http://dunbrack.fccc.edu/
http://dunbrack.fccc.edu/
https://en.wikipedia.org/wiki/Solvation

28

 omega angles.

 Useful if doing loop
remodeling.

RAMA Ramachandran

energy. Each
N/A

 amino acid has it’s

own preference

 for where it likes to sit
in the

 Ramachandran plot.

 Useful during
backbone

 remodeling or loop

remodeling.

P_AA_PP Probability of amino

acid given phi
N/A

 and psi. rama

looked at from a

 different angle.

 Useful during loop

remodeling.

PRO_CLOSE How bad the

geometry of the
N/A

 proline rings are.

Rosetta allows

 the proline sidechain

ring to open

 up during modeling

and uses

 pro_close to keep

them closed.

 Useful only for

extensive loop

 remodeling.

RES_TYPE_CONSTRAINT How close is the

results to the
N/A

 native sequence.

Useful if you

 want to filter on this

basis.

https://en.wikipedia.org/wiki/Dihedral_angle
https://en.wikipedia.org/wiki/Ramachandran_plot

29

COMPLEX_NORMALIZED Total score of the protein

complex
N/A

 normalized by the number of

 residues.

DG_CROSS The energy of interaction

between
N/A

 the two sides of the

complex,

 calculated in the holo state

 (protein bound to ligand)

DG_SEPARATED The energy of interaction

between
N/A

 the two sides of the

complex,

 calculated by taking the

score of

 the holo state, then

separating the

 two sides of the interface,

 optionally repacking, and

then

 calculating the score in the

 separated state. This is

particularly

 useful if you think you have

an

 "induced fit" type situation,

and

 want to correct for

repacking in

 the absence of the ligand.

DG_SEPARATED/DSASA

X100
The energy density of the N/A

interface. This is a more

direct

DG_CROSS/DSASAX100 N/A

measure if you have a small

tight

 interface. Useful for

 protein-protein designs

DSASA_INT A rough gauge of how much

the
N/A

 two sides of the interface are

 touching.

DELTA_UNSATHBONDS How many unsatisfied

hydrogen
N/A

 bonds are introduced by the

 design Unsatisfied hydrogen

bonds

 are ones where the atom is

able to

 make a hydrogen bond but

doesn’t

 because it’s blocked by

other

 residues.

NRES_ALL The total number of residues

in
Number of residues in the

PDB

30

 the complex file

NRES_INT The total number of residues

in
Number of residues in the

 the interface interface

PACKSTAT How well the protein is

packed.
values between 0-1. 1

being

 values between 0-1 with 1

being
better.

 better

31

Important links, support and more data

For more information and guides on Rosetta and its functions please visit
the official documentation.

For troubleshooting you can check the fixing errorspage or the forums.

The forumsare a great source of knowledge about various aspects of
Rosetta and are quite active.

Another great source of information for beginners is Vanderbilt University’s Meiler
Lab website.Under the tab “Rosetta Tutorials” you can find materials from
several workshops about Rosetta, these include protocols, demos and scripts.
You can also check out their youtube page

https://www.rosettacommons.org/docs/latest/Home
https://www.rosettacommons.org/docs/latest/Home
https://www.rosettacommons.org/docs/latest/rosetta_basics/fixing-errors
https://www.rosettacommons.org/forum
https://www.rosettacommons.org/forum
http://www.meilerlab.org/index.php/jobs/resources
https://www.youtube.com/user/meilerlabadmin/videos

32

Thanks and Acknowledgements

iGEM Technion 2016

We would like to thank Rocco Moretti, Brian J. Bender, Brittany Allison and Jens

Meiler of Vanderbilt University’s Meiler Lab for the protocol: “Rosetta and the

Design of Ligand Binding Sites”.

A special thanks to Dr. Rocco Moretti for his extensive help, detailed and

thorough answers and incredible patience.

Mr. David Cohen from the Technion Physics department for his help with

the ATLAS computer cluster.

Dr. Fabian Glaser from the Technion Bioinformatics Knowledge Unit for his

help with protein-ligand docking and explanations about Chimera UCSF.

Dr. Roee Amit, Mrs. Michal Brunwasser, Mrs. Noa Kats, Mrs. Beate Kaufmann,

and Mrs. Alex Ereskovsky from the Technion faculty of Biotechnology for their

guidance and patience.

iGEM TU Eindhoven 2016

We would like to thank Dr Ir. Tom de Greef for providing literature on which we

could base our protein design. That said we would like to thank Gregory T. Kapp,

Sen Liu, Amelie Stein, Derek T. Wong, Attila Reményi, Brian J. Yeh, James S.

Fraser, Jack Taunton, Wendell A. Lim and Tanja Kortemme for their article about

the computational design of an orthogonal pair and providing the protocolfor

extensive remodeling to get more accurate results.

A special thanks Dr. Ir Bart Markvoort for advice on how to use the Tu/e biosim

cluster, for giving feedback on our written protocol and giving tips on what further

steps to take to get more accurate results.

Another big thank you to Job Roodhuizen for giving us a crash course on

Linux and providing self written programs for analyzing the computational

alanine scan data.

A thank you to iGEM team Wageningen for providing some information about

PyRosetta.

http://www.pnas.org/content/suppl/2012/03/07/1114487109.DCSupplemental/Appendix.pdf

