
Taris Bioreactor User Manual

UCSC iGEM

2016

1

CONTENTS CONTENTS

Contents

1 Introduction 3

2 Taris Controller 3
2.1 Bioreactor Hardware Setup . 3

2.1.1 Reactor Design . 3
2.1.2 Peripheral Circuit Board Design 6
2.1.3 Microcontroller Setup . 6

2.2 Software Installation (Raspberry Pi) 7
2.3 Using the Bioreactor . 7

2.3.1 Calibrating the Sensors 7
2.3.2 Running the Bioreactor 8

2.4 Calibrating the PID . 8

3 Taris Server 10
3.1 Server Setup . 10
3.2 Resetting the Server . 11
3.3 Interacting with the Website . 11
3.4 Website Screenshots . 11
3.5 Sample Data . 12

4 Appendix 13
4.1 Parts List . 13
4.2 Schematics . 15

2

2 TARIS CONTROLLER

1 Introduction

The 2016 UCSC iGEM team proudly presents this manual with a purpose
twofold: to guide those interested in assembling their own reactors for the ad-
vancement of synthetic biology at a do-it-yourself level, and to document the
ten weeks of unquestionable effort that went into this project. In the follow-
ing pages, we describe the bioreactor from the board up, including–but not
limited to–assembling the peripheral circuit board using a predetermined list
of components (found in the Appendix), installing the required software using
taris-controller, our installable Python package, calibrating the bioreactor’s
sensors, and setting up the server software, taris-server, to view bioreactor
conditions through an online interface.

2 Taris Controller

2.1 Bioreactor Hardware Setup

The Taris bioreactor can be segregated into several main components, each
with their discrete sections. The hardware hierarchy is as follows:

1. Physical Reactor: houses culture and outputs desired metabolic byprod-
ucts

2. Peripheral Circuit Board: directs sensor signals and outputs to phys-
ical motors and heater

3. Microcontroller: governs feedback controls, safeguards, sensor data, and
sending information to the online interface

2.1.1 Reactor Design

The physical reactor consists of several sections: a nutrient tank that con-
tains growth media required to sustain the culture, the chemostatic chamber
that houses the culture, the filter that removes impurities and biological mass,
and a collection tank with which to store the desired metabolic byproducts.
Figure 2.1.1 shows the overall physical setup of the Taris bioreactor.

It is important, first of all, to cover the processes that governs the Taris
bioreactor. Namely, the concept of chemostasis, in which fresh growth media
consisting of glucose, fructose, and LB, are pumped through a sterilizable vessel
(in this case, a 1-gallon glass container). The rate at which media are provided
to the reaction chamber is governed by the specific growth rate µ of the culture.
This is determined through the doubling time td of the specific bacterial strain:

µmax =
ln(2)

td

The goal of chemostasis is to achieve a steady state in which the dilution rate
D, or the rate at which the bioreactor culture is being diluted with fresh media,

3

2.1 Bioreactor Hardware Setup 2 TARIS CONTROLLER

Figure 1: Reactor flow process diagram. The various connection types are
indicated by the above key.

equals the rate at which the bacteria are growing. The dilution rate can be
calculated from the medium flow rate F , which is defined by the rate which
liquid is flowing into and out of the reaction vessel, and the culture volume V :

D =
F

V

In the case of our bacterial strain, this td ≈ 100 min. This means that

µmax =
ln(2)

100min
≈ 0.007 min−1

With a culture volume of 3.78L (1 US gallon), the medium flow rate can be
determined:

F = DV = µV = 3.789L · 0.007min−1 = 0.0256L/min

This calculation may vary according to the specific conditions provided with the
strain, so optimization is required to determine the ideal temperature, pH, and
oxygen concentration–the latter of which is currently a rough estimate due to
sensor cost–in order to provide the culture with conditions for maximum growth.
The result of keeping the culture in a constant state of growth is the avoidance
of bacterial stagnation due to intrinsic density limiters (quorum sensing).

The motors that drive the peristaltic pumps are 12V, 200mA DC. They
are driven individually by nFETs controlled by the attached Raspberry Pi. The
power delivered to the motors is controlled via a pulse width modulated (PWM)

4

2.1 Bioreactor Hardware Setup 2 TARIS CONTROLLER

Figure 2: Motor driver for peristaltic pump control, complete with current-sense
resistor and back EMF suppression.

signal, which is provided via the PiBlaster library (described in Section 2.3).
Figure 2 shows a driver circuit for a single peristaltic pump.

Notice the additional capacitor bank in the figure above. This was neces-
sary because of the inductive spikes due to the rotation of the DC motors that
powered the peristaltic pumps. With each turn of a motor, back EMF (elec-
tromotive force) E is generated. This EMF appears as a voltage spike with a
reverse polarity to the power supply, and can occur multiple times per rotation
depending on the number of poles in the motor. Because the coils of wire consti-
tuting the motor windings have low resistance (the average off-state resistance
of our peristaltic pumps was ∼ 1.2Ω), EMF also generates large current spikes–
relative to steady state operation–to the ground plane. For instance, although
the operating current of the peristaltic pump motors was normally 200mA,
tests using 0.1Ω sense resistors yielded momentary spikes of up to 1.6A. By
putting a bulk capacitor bank in parallel with each motor, noise due to EMF
could be effectively attenuated. This bank was comprised of a 470µF, 16V alu-
minum polymer capacitor and a 10µF, 50V ceramic capacitor. This range was
used to optimize noise suppression across a range of frequencies–covering the
high-frequency spikes from EMF as well as the accompanying lower-frequency
“plateaus” due to the motor charging with reverse polarity.

In addition to the capacitors, Vishay Semiconductors VS-STPS20L15DPBF[?]
Schottky Rectifier diodes were used for flyback suppression. In the same line as
EMF suppression, the diodes were used to form a conductive loop to starve the
motor of residual charge. These diodes are placed with a reverse bias relative
to the power supply so that they only conduct–becoming forward-biased–when
the motor charges with reverse polarity to the power supply. Energy is then
dissipated by the diode as heat, instead of being transferred to the rest of the
circuit. These Schottky diodes were chosen because of their low forward voltage

5

2.1 Bioreactor Hardware Setup 2 TARIS CONTROLLER

(0.2V compared to 0.7V for standard diodes), their fast response (<500ns), and
their high power tolerances–up to 1.5◦C/W thermal resistance from junction to
case and 125 ◦C TJMAX , with transient spikes from the motors of 0.3W. These
power ratings may be excessive, but they allow for scaling the motors without
requiring PCB redesign.

2.1.2 Peripheral Circuit Board Design

Figure 3: Schematic of the Taris circuit design. 12V and 0V connects to TB6.
TB1, TB2, TB3, TB4, and TB8 connect to motors (or a relay to control a
heating element).

The I2C address buses for the peripherals are defined as pH sensor: 0x63,
temperature sensor: 0x66, and ADC (ADS1115): 0x48. The board is powered
from two sources: 5V (typically the raspberry pi) powers the ADC, nMOSFETs,
and LEDs; 12V powers the motors and any relays attached.

2.1.3 Microcontroller Setup

Power (5V) and ground pins need to be hooked up to the circuit from pins
in Figure 3 (typically pins 1 and 39). Pins allocated for use in pi-blaster can be
used for PWM control of motors or the heating element. Default pins for the

6

2.2 Software Installation (Raspberry Pi) 2 TARIS CONTROLLER

motors are pins 21, 22, and 23. The default pin for the heating element is pin
17.

Figure 4: Pinout for the raspberry pi 3, courtesy of element14.com.

2.2 Software Installation (Raspberry Pi)

The software is currently run from taris hw.py in its destination folder using
python 2.7. The pi must be in I2C Mode. Matplotlib and Adafruit’s ADS1X15
Library must also be installed prior.

2.3 Using the Bioreactor

2.3.1 Calibrating the Sensors

If the sensors have not yet been calibrated, this step is required, otherwise,
it may be skipped, however, it is good practice to calibrate before the start
of each new culture. In order to calibrate the sensors (both the Atlas EZO
pH Sensor and Atlas EZO Temperature Sensor), simply follow the on-screen
menu, and select ”Calibrate Sensors”. Both the temperature sensor and pH

7

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c

2.4 Calibrating the PID 2 TARIS CONTROLLER

are recommended to be calibrated at the same time, as the effects of one can
influence the bias of the other.

2.3.2 Running the Bioreactor

Once the sensors are calibrated, the bioreactor can be run with the option:
”Run Bioreactor”. Selecting this should immediately start displaying sensor
data output from the system and begin warming the system to specified the
parameter temperature. If the pH is lower than the parameter specified, it will
add NaOH in slowly until the system reaches the desired pH. HCl addition was
not implemented, because B. subtilis has been shown to only lower pH, and
so we only expect to keep the pH from sinking. Because our pumps are not
accurate, it only adds a drop or so at a time accounting for slow changes in pH,
and it may take time to stabilize from an initial significant difference in pH. It
is recommended to begin the culture with pH conditions as close as possible to
the desired parameters.

Once running, the bioreactor will automatically begin sending JSON files of
data to the server specified in the code (currently UCSC’s SOE cloud server),
and will check for new JSON files from the server telling it to change pH or
temperature parameters.

2.4 Calibrating the PID

The control scheme we used for stabilizing the internal conditions of the
bioreactor was PID, which stands for Proportional-Integral-Derivative. This is
a common feedback mechanism that is widely applicable because of its simplicity
and scalability. The PID control consists of three main transfer functions, each
providing a particular gain effect on the system’s output. Figure 5 shows a basic
PID block diagram.

Figure 5: PID block diagram. In this case, the input to the system x(t) is data
from the EZO sensors, and the output y(t) is the motor PWM frequency–the
conversion from flow rate is done automatically.[?]

8

2.4 Calibrating the PID 2 TARIS CONTROLLER

The first parameter in PID control is the Proportional signal, P (t), where
the error e(t) is the difference between the last system output value and the
system setpoint. In other words, e(t) = x(t) − ysp. This proportional signal is
completely based on the current error signal, scaled by some gain factor Kp:

P (t) = Kpe(t)

The second parameter is the Integral signal, which takes into account the
speed at which an error has occurred. This means that the controller will limit
the rate at which it responds to large error in order to decrease over-response to
a brief oscillation that would otherwise keep the system average fairly constant.
This means that, given the system error e(t),

I(t) = Ki

∫ t

0

e(τ)dτ

where Ki is another scaling factor for the integral signal. The integral signal
also has the opposite behavior for an error that has not been rectified for a long
time. By integrating over the history of the error within a given time frame, the
system’s output continuously increases if the error is not rectified. It is evident
that if e(t) = 0 (the system has reached its desired value), the integral signal
will reset to 0 and will begin integrating again from that new time origin.

The addition of the integral signal I(t), however, does not come without its
consequences. As briefly noted, because any error that exists for a significant
multiple of the sampling time ts will quickly throw the output of the system
to a very large value–and ruin the purpose of PID. This sharp rise in integral
error then necessitates the additional Derivative signal, which analyzes the rate
of change of the signal (and thus its future values) and accordingly dampens the
behavior of the integral signal. This prevents the system output from oscillating
due to high gain on the first two transfer functions, and allows it to narrow in
on the desired final output value. As with the previous transfer functions, the
derivative control also has a gain factor, Kd:

D(t) = Kd
d

dt
e(t)

Combining all of these transfer functions yields the full continuous form of
the PID control:

y(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt

Table 1 describes the effects of modifying the gain factors Kp,Ki, and Kd for a
PID controller:

The basic tuning for a PID control is as follows:

• Set all gain coefficients to zero.

9

3 TARIS SERVER

Parameter Increase Rise Time Overshoot Settling Time Steady-State Error
Kp Decrease Increase ±δ Decrease
Ki Decrease Increase Increase Greatly Reduce
Kd ±δ Decrease Decrease ±δ

Table 1: Effects of increasing parameter gain for each of the transfer function
coefficients of a standard PID controller.[?]

• Increase Kp until system oscillates

• Increase Kd until system is critically damped

• Repeat last two steps until Kd does not damp oscillations, then increase
Ki until system stabilizes to the desired oscillation time Ti.

The taris-controller package comes with an integrated PID control cal-
ibration tool to assist with determining the correct gain coefficients.

3 Taris Server

3.1 Server Setup

First, a server must be set up. For our purposes, we used a cloud-hosted
server, first on Amazon’s AWS, and then shifting over to one of our engineering
department’s SOE cloud servers. This was loaded with Ubuntu 14.04, and
an Apache layer was installed on top of this. Anaconda (V4.2.0) was then
installed. This provides for the dependencies that the Taris’s python programs
need (all are python version 2.7). Port access was limited to block traffic for all
ports except port 22 SSH (Secure Shell), port 80 HTTP (HyperText Transfer
Protocol), port 443 HTTPS (HyperText Transfer Protocol Secure), and port 22
(ssh) was restricted to only accept traffic from within UCSC.
The raspberry pi had to be setup to use eduroam through the school system
in order to transfer data via this ssh. This involves editing the raspberry pi’s
wpa supplicant.conf file.

First, navigate to the file and edit it with nano:

sudo nano / e tc / wpa suppl icant / wpa suppl icant . conf

Edit in the following wifi network:

c t r l i n t e r f a c e =/var /run/ wpa suppl icant
network={

s c a n s s i d=1
s s i d=”eduroam”
key mgmt=WPA−EAP
eap=PEAP
i d e n t i t y=” xxx@ucsc . edu”

10

3.2 Resetting the Server 3 TARIS SERVER

password=”XXXXXX”
c a c e r t =”/e tc / s s l / c e r t s / u c s c n o c c a d e r . c r t ”
phase1=”peap labe l=0”
phase2=”auth=MSCHAPV2”

}

After setting up the dependencies, the python, html, js, and css code is
hosted on the server and run via TarisV1.py.

3.2 Resetting the Server

Just in case:

sudo − i #become root
ps aux | grep f l a s k
sudo k i l l [task IDs to be k i l l e d]
cd ˜ d i r e c t o r y #go in to the proper d i r e c t o r y
cd [path to TarisV1 . py]
export FLASK APP=TarisV1 . py
nohup f l a s k run −−host =0 .0 . 0 . 0 −−port=80 &

3.3 Interacting with the Website

The website is mainly a visual method of checking on the bioreactor, as well
as allowing a look at past history to see if the heater ever boiled the culture
briefly or overflowed or the pH went crazy and ticked up some morse code... or
anything really. The real functionality is in the parameters page (accessed from
the sidebar) which takes the following inputs:

• Set pH to:

• Set temp to:

• Who are you:

• Enter Passcode:

Each parameter must be entered and a username and password given to
authenticate the changes to the bioreactor’s functions.

3.4 Website Screenshots

11

3.5 Sample Data 3 TARIS SERVER

Figure 6: Parameters webpage allowing access and control of the bioreactor
remotely (smartphone or computer).

Figure 7: Main webpage with gauges indicating current bioreactor conditions.

3.5 Sample Data

Here is some data collected from Bacillus subtilis (strain 3NA) over several
hours.

12

4 APPENDIX

	30.3
	30.4
	30.5
	30.6
	30.7
	30.8
	30.9
	31

	31.1
	31.2
	31.3
	31.4
	31.5
	31.6
	31.7
	31.8
	31.9
	32

	32.1
	32.2
	32.3
	32.4
	32.5
	32.6
	32.7
	32.8
	32.9
	33

	33.1
	33.2
	33.3
	33.4
	33.5
	33.6
	33.7
	33.8
	33.9
	34

	34.1
	34.2
	34.3
	34.4
	34.5
	34.6
	34.7
	34.8
	34.9
	35

	35.1
	35.2
	35.3
	35.4
	35.5
	35.6
	35.7
	35.8
	35.9
	36

	36.1
	36.2
	36.3
	36.4
	36.5
	36.6
	36.7
	36.8
	36.9
	37

	37.1
	37.2
	37.3
	37.4
	37.5

	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13

Te
m
pe
ra
tu
re
	(C

)

Time	(hours)

B.	subtilis	Running	with	Heater	(and	pH)

Figure 8: Temperature measurements recorded using the Atlas Scientific RTD
sensor. Slight oscillations are normal due to the nature of PID, and are on an
inconsequential scale.

	6.2

	6.25

	6.3

	6.35

	6.4

	6.45

	6.5

	6.55

	6.6

	6.65

	6.7

	6.75

	6.8

	6.85

	6.9

	6.95

	7

	7.05

	7.1

	7.15

	7.2

	7.25

	7.3

	7.35

	7.4

	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12

pH

Time	(hours)

B.	subtilis	Running	with	pH	(and	Heater)

Figure 9: pH recording using the Atlas Scientific EZO sensor indicates cultural
contamination or a mishap with the pH control circuit. It is unclear which
occured, but it is nonetheless important to recognize the general stability of the
system.

4 Appendix

4.1 Parts List

13

4.1 Parts List 4 APPENDIX

Table 2: PCB Components
Component Model Quantity Component Description
NXP PSMN022-30PL,127 5 nFET for motor driver
STPS20L15DPBF-ND 5 Flyback diode
296-38849-1-ND 1 ADS 1115 ADC i2C
P16299-ND 5 Alu-Poly Cap 470uF
43FR10E-ND 4 3W 0.1Ω sense resistor
CRT0603-BY-1001EASCT-ND 8 1K SMD resistor
WM5514-ND 2 BNC Connector
445-2887-ND 10 10uF Ceramic Cap
478-5741-ND 5 0.1uF Ceramic Cap
ED1609-ND 6 2 Screw Terminal
WK6245-ND 1 Fuse Holder 5x20mm
283-2836-ND 1 Fuse 15A
296-35972-1-ND 1 TCA9517 I2C Buffer
RMCF0805JT180RCT-ND 5 180Ω CL resistor
311-560ERCT-ND 1 560Ω CL resistor
SML-D12U1WT86CT-ND 1 Red LED
SML-D12Y1WT86CT-ND 5 Yellow LED
S7000-ND 2 2 Pin female Header
S6103-ND 1 5 Pin female Header
Atlas Scientific EZO pH and RTD 1 Sensors for bioreactor

Table 3: Reactor Parts
Component Description Quantity
1 Gallon Fermentation Vessel 3
Peristaltic Pump 100mL/min 4
150W Heater Pad (60W min) 1
Air Pump + Air Stone (8L/min) 1
Check Valve 8
Inline Air Filter (ideally HEPA) 4
12V, 10A power supply 1
3/16” barb to 1/4” NPT Male 6
3/16” barb to 1/4” NPT Female 6
3/16” OD silicone tubing 15’
Mounting Brackets for Vessels + Pumps 6
Rubber stopper for holding probe leads 2

14

4.2 Schematics 4 APPENDIX

4.2 Schematics

Figure 10: Schematic for bioreactor control board

15

	Introduction
	Taris Controller
	Bioreactor Hardware Setup
	Reactor Design
	Peripheral Circuit Board Design
	Microcontroller Setup

	Software Installation (Raspberry Pi)
	Using the Bioreactor
	Calibrating the Sensors
	Running the Bioreactor

	Calibrating the PID

	Taris Server
	Server Setup
	Resetting the Server
	Interacting with the Website
	Website Screenshots
	Sample Data

	Appendix
	Parts List
	Schematics

