Phusion high-fidelty DNA Polymerase

	50 μL	20 μ L
Water	$32.5 - X \mu L$	13.3 - X
5X Phusion HF Buffer	10 μL	4 μL
dNTP Mix (10 mM each)	1 μL	0.5 μL
Forward primer (10 µM)	3 μL	1 μL
Reverse primer (10 µM)	3 μL	1 μL
Phusion (2 U/μL)	0.5 μL	$0.2~\mu L$
T I DNA	V (0.001.050)	37 (0 0004

Template DNA X (0.001-250 ng) X (0.0004-100 ng)

	Temp, °C	Time	Cycles
Initial denaturation	98	30 s-3 min	1
Denaturation	98	5-10 s	
Annealing	Lower $Tm + 3$	10-30 s	25-40
Extension	72	15-40 s/kb	
Final Extension	72	5-10 min	1

DreamTaq

50 μL	20 μL
$37.5 - X \mu L$	15.4 - X
5 μL	$2~\mu L$
1 μL	$0.5~\mu L$
3 μL	1 μL
3 μL	1 μL
0.25 μL	$0.1~\mu L$
X (0.01 - 1000 ng)	X (0.004 - 400 ng)
	37.5 – X μL 5 μL 1 μL 3 μL 3 μL 0.25 μL

Temp, °C Time Cycles
Initial denaturation 95 1-3 min 1
Denaturation 95 30 s
Annealing Tm - 3 30 s 25-40

 Extension
 72
 1 min/kb

 Final Extension
 72
 5-15 min
 1

T4 DNA Ligase

10 μL

Insert DNA Y (1-5 amount vector)

 $\begin{array}{ll} \textbf{10X Ligase Buffer} & 1~\mu L \\ \textbf{T4 DNA Ligase (5 U/ }\mu L) & 0.1~\mu L \end{array}$

Temp, °C Time
Ligation 22 10-60 min

PrimeSTAR HS DNA Polymerase

	50 μL	20 μL
Water	$32.5 - X \mu L$	13.3 - X
5X PrimeSTAR Buffer	10 μL	4 μL
dNTP Mix (10 mM each)	1 μL	$0.5~\mu L$
Forward primer (10 µM)	3 μL	1 μL
Reverse primer (10 µM)	3 μL	1 μL
PrimeSTAR (2.5 U/μL)	0.5 μL	$0.2~\mu L$

Template DNA X (0.01-200 ng) X (0.004-100 ng)

	Temp, °C	Time	Cycles
Initial denaturation	98	30 s-3 min	1
Denaturation	98	10 s	
Annealing	Tm	5-15 s	25-40
Extension	72	1 min/kb	
Final Extension	72	5-10 min	1

FastDigest Restriction Enzyme

	50 μL	20 μ L
Water	$40 - X \mu L$	16 – X μL
10X FastDiget Buffer	5 μL	$2~\mu L$
FastDigest	5 μL	$2~\mu L$
DNA	$X (\leq 2 \text{ ng})$	X (< 1 ng)

	Temp, °C	Time
Digestion	37	5-60 min
Inactivation	65	5 min

CPEC

	25 μL
dH_2O	$17.75 - X \mu L$
5X HF Phusion Buffer	5 μL
dNTP Mix (10 mM each)	1 μL
DMSO	$0.75~\mu L$
Phusion Polymerase (2 U/μL)	$0.5~\mu L$

DNA (1:1 of each piece) X (0.01-1000 ng)

	Temp, °C	Time	Cycles
Initial denaturation	98	30 s	1
Denaturation	98	10 s	
Annealing	55	10-30 s	1-15
Extension	72	15 s/kb	
Final Extension	72	5-10 min	1

Yeast electroporation

10×TE buffer (pH 7.5):

100 mM Tris-HCl, 10 mM EDTA

10× LiAc: 1 M LiAc, pH 7.5 (adjusted using HAc).

Filter-sterilize or autoclave for 20 min.

1 M DTT: stored at -20°C

Day 1

Pick up single colonies on plates to 5 ml YPD medium. Culture at 30°C for 12-16 h.

Day 2

1. Inoculate into 50 ml YPD medium in flask. Culture at 30°C for 6-9 h.

<><< Put sterilized water on ice >>>>

2. When OD is 0.5-1.2, transfer cell culture into 50 ml cap tube (sterilized).

<><< From here cells should be always on ice >>>>

- 3. Collect cells by centrifugation (1100 g, 4°C, 5 min). Decant supernatant.
- 4. Re-suspend cells with 20 ml of sterilized H2O (ice-cold). Mix with pipetman. Centrifuge and decant supernatant.
- 5. Treat cells with 20 ml of 0.1 M LiAc (16 ml 1 M sorbitol + 2 ml 10×TE buffer + 2 ml 1 M LiAc) at 30°C for 30 min. Add 0.2 ml 1 M DTT and keep cells at 30°C for 15 min. Centrifuge and decant supernatant.

<><< Put 1 M sorbitol on ice >>>>

- 6. Wash cells twice with 20 ml of 1 M sorbitol (ice-cold). Centrifuge and decant supernatant.
- 7. Re-suspend cells with 100-200 μl of sterilized ice-cold 1 M sorbitol (final OD=100-200).
- 8. Take 50 μl of suspended cells into a new 1.5 ml tube on ice.
- 9. Add 5 μl fragment DNA (> 200ng/μl). Mix with pipetman and keep on ice for 15 min. Transfer all to a sterilized cuvette (green cap). Add 1 ml of cold 1 M sorbitol to new labeled tubes (used later).
- 10. Set the cuvette in the holder of Micro Pulser Electroporator. Chose "Manual", and set voltage at 1.5 kV. Push the pulse button. Read "Time / ms", if it is between 4.0-6.0, this process is successful.
- 11. Add 1 ml of cold 1 M sorbitol, immediately after the pulse. Mix well by pipetting up and down. (After this, it is OK to be at RT.) Transfer all to the sorbitol tube ASAP.
- 12. Incubate at 30°C for 1-3 h. Centrifuge (3000 g, 1 min) to ~150μl and then spread cells on selection plates. Make a negative control plate. Place the plates at 30°C air incubator.

YPD: Yeast extract 10 g/l, peptone from meat 20g/l, glucose 20 g/l.

SC-URA: YNB without aa 6.9g/l, glucose 20g/l, URA-drop-out 0.77 g/l.

Delft: (NH4)2SO4 7.5 g/l, KH2PO4 14.4 g/l, MgSO4·7H2O 0.5 g/l, metal solution 1 ml/l, vitamin 1 ml/l.

Frozen-EZ Yeast Transformation II

Preparation of Competent Cells

Grow yeast cells at 30° C in 10 ml YPD broth until mid-log phase (\sim 5 x 106 - 2 x 107 cells/ml or OD600 of 0.8-1.0). The following steps are accomplished at room temperature.

- 1. Pellet the cells at 500 x g for 4 minutes and discard the supernatant.
- 2. Add 10 ml EZ 1 solution to wash the pellet. Repellet the cells and discard the supernatant.
- 3. Add 1 ml EZ 2 solution to resuspend the pellet.

At this point, the competent cells can be used for transformations directly or stored frozen at or below -70°C for future use. It is important to freeze the cells slowly. To accomplish this, either wrap the aliquotted cells in 2-6 layers of paper towels or place in a Styrofoam box before placing in the freezer. DO NOT use liquid nitrogen to snap-freeze the cells.

Transformation

This part of the procedure is the same for both frozen stored (thawed at room temperature) and freshly prepared competent yeast cells.

- 1. Mix 50 μl of competent cells with 0.2-1 μg DNA (in less than 5 μl volume); add 500 μl EZ 3 solution and mix thoroughly.
- 2. Incubate at 30°C for 45 minutes. Mix vigorously by flicking with finger or vortexing (if appropriate for your DNA) 2-3 times during this incubation.
- 3. Spread 50-150 μ l of the above transformation mixture on an appropriate plate. It is unnecessary to pellet and wash the cells before spreading.

Incubate the plates at 30°C for 2-4 days to allow for growth of transformants.

Gibson assembly method

(Optional) DpnI Digestion Protocol: When higher amounts of plasmid template must be used in the PCR reaction, it is recommended to digest the PCR product with DpnI (NEB #R0176) in order to destroy plasmid template before setting up the Gibson Assembly reaction. DpnI cleaves only E. coli Dam methylase-methylated plasmid DNA, but does not cleave the PCR product since it is not methylated. DpnI Digestion Protocol:

- 1. In a total 10 μl reaction, mix 5–8 μl of PCR product with 1 μl of 10X Cutsmart and 1 μl (20 units) of DpnI.
- 2. Incubate at 37°C for 30 minutes.
- 3. Heat-inactivate DpnI by incubating at 80°C for 20 minutes.
- 4. Proceed with the Gibson Assembly Cloning procedure.

Assembly Protocol

1. Set up the following reaction on ice:

Recommended amount of fragment used for assembly

	2-3 Fragment assembly	4-6	Fragment	Positive control
		Assembly		
Total amount of fragments	0.02-0.5pmols* X μL	0.2-1pmols Σ	XμL	10 μL
Gibson Assembly mix (2X)	10 μL	10 μL		10 μL
Deionized H2O	$10 - X \mu L$	$10 - X \mu L$		0
Total volume	20 μL**	$20~\mu L$		20 μL

^{*50–100} ng of vectors with 2–3 fold of excess inserts. Use 5 times more of inserts if size < 200 bps

- 2. Incubate samples in a thermocycler at 50°C for 15 minutes when 2 or 3 fragments are being assembled or 60 minutes when 4-6 fragments are being assembled. Following incubation, store samples on ice or at –20°C for subsequent transformation.
- 3. Transform NEB 5-alpha Competent E. coli cells (provided with the kit) with 2 μ l of the assembly reaction, following the transformation protocol.

Gibson Assembly Transformation Protocol

- 1. Thaw chemically competent cells on ice.
- 2. Add 2 µl of the chilled assembly product to the competent cells. Mix gently by pipetting up and down or by flicking the tube 4–5 times. Do not vortex.
- 3. Place the mixture on ice for 30 minutes. Do not mix.
- 4. Heat shock at 42°C for 30 seconds. Do not mix.
- 5. Transfer tubes to ice for 2 minutes.
- 6. Add 950 µl of room-temperature SOC media to the tube.
- 7. Incubate the tube at 37°C for 60 minutes. Shake vigorously (250 rpm) or rotate.
- 8. Warm selection plates to 37°C.
- 9. Spread $100 \mu l$ of the cells onto the selection plates. Use Amp plates for positive control sample.
- 10. Incubate overnight at 37°C.

^{**}If greater numbers of fragments are assembled, additional Gibson Assembly Master Mix may be required.