

iGEM TU/e 2015

Biomedical Engineering

Eindhoven University of Technology Room: Ceres 0.04 Den Dolech 2, 5612 AZ Eindhoven The Netherlands Tel. no. +31 50 247 55 59 2015.igem.org/Team:TU_Eindhoven

Colony Picking & Colony PCR

Table of contents

	/		
Colony Picking & Colony PCR	/ 1	Colony Picking	3
	/ 1.1	Materials	3
	1.2	Setup & Protocol	3
,	2	Colony PCR	3
	2.1	Materials	3
	2.2	Setup & Protocol	4
	3	Gel electrophoresis	4

1 Colony Picking

Estimated bench time: 10 minutes per plate Estimated total time: 10 minutes per plate

Purpose: Picking single colonies for further processing

It is essential to work sterile, thus disinfect your hands and work near a Bunsen Burner.

1.1 Materials

- Autoclaved Eppendorf tubes
- Autoclaved H₂O
- Bunsen Burner
- Pipettes and tips
- Plates with the bacterial colonies

1.2 Setup & Protocol

- Fill out Eppendorf tubes with 15 μl autoclaved H₂O.
- Pick bacterial colonies (±5 per plate) near the Bunsen flame with a pipette tip.
- Place the colonies into correct labeled Eppendorf tubes.
- Pipette up and down such that they are mixed well.

2 Colony PCR

Estimated bench time: 30 minutes

Estimated total time: 10 minutes per plate

Purpose: Verifying if the colony contains the correct insert.

When performing a colony PCR, you are working with bacteria close to a Bunsen Burner. Make sure to disinfect your hands. When preparing the MasterMix, make sure to use gloves to protect the MasterMix from DNase activity.

2.1 Materials

- 2X KAPA2G mix
- Autoclaved H₂O
- Bucket with ice
- Pair of primers which correspond to correct binding sites on the vector
- PCR tubes
- Pipettes and tips
- The colonies (from colony picking)

2.2 Setup & Protocol

For one colony PCR reaction, the following mix should be made:

Component	Quantity/mass/final concentration	Volume (μl)
DNA (from bacteria)	Pipette tip in 15 μl H₂O	1
2x KAPA2G mix	1x	12.5
Primer FW	0.5 μM (stock: 10 μM)	1.25
Primer RV	0.5 μM (stock: 10 μM)	1.25
H ₂ O		9
Total		25

In order to simplify this step, prepare a MasterMix (2-3 reactions in excess). Keep the mix on ice. Do not add the bacterial DNA but take it into account while calculating the amount of required H₂O.

Component	Quantity/mass/final concentration	Volume (μl)
DNA (from bacteria)	Pipette tip in 15 μl H ₂ O	1 for each separate PCR mixture
2x KAPA2G mix	1x	
Primer FW	0.5 μM (stock: 10 μM)	
Primer RV	0.5 μM (stock: 10 μM)	
H ₂ O		
Total		

• Run the following PCR program:

Step	Temp °C	Time (sec)	Cycles
Initial denaturation	95	180 (3 min)	1
Denaturation	95	15	35
Annealing	X ¹	15	
Extension	72	20 sec/kb	
Final extension	72	600 (10 min)	1
Cooling	4	Hold	1

3 Gel electrophoresis

Estimated bench time: 40 minutes Estimated total time: 1.5 hours

Purpose: Agarose gel electrophoresis may be used to verify the purity of your PCR product. If

the product is pure, a single bond will show up during the gel electrophoresis.

For more information, see our general Agarose Gel Electrophoresis protocol.

¹ The annealing temperature can be calculated for the set of primers using New England Biolabs Tm calculator. An annealing temperature of 3°C lower than the lowest melting temperature was used to increase yields.