Expression of TyrocidineAuthor of lab-notebook: Verena

Content

1. Introdu	ction Tyrocidine construct	3
2. Method	s &Materials	3
2.1. Prej	paration of parts	3
2.1.1.	Amplification of parts by PCR	3
2.1.2.	Digestion of pSBC13 plasmid backbone	4
2.2.	Gibson assembly	4
2.3.	Transformation	5
2.4.	Colony PCR	5
3. Initial T	Tyrocidine construct overview	6
3.1. Intr	oduction	6
3.2. Prej	paration of parts for Tyrocidine expression	7
3.3. Tyr	ocidine construct Gibson assembly	7
3.4. Tyr	ocidine construct Transformation and colony PCR	9
3.5. PCF	R troubleshooting	10
3.6. Res	ults and Conclusion:	11
4. Tyrocid	ine expression by splitting up construct	12
4.1. Intro	0	12
4.2. Prej	paration of parts for Tyrocidine expression	13
4.3. Tyr	ocidine construct Gibson assembly	14
4.5. Res	ults and Discussion	15
5. Tyrocid	ine Expression with XylR in separate plasmid	15
5.1. Intr	0	15
5.2. Prej	paration of parts for Tyrocidine expression	16
5.3.1.	Gibson assembly	17
5.3.2.	Gibson assembly with DMSO	18
5.5. Res	ults and Conclusion	18
6. Isolatio	n of aDNA from Brevibacillus parabrevis, 31,07,15	19

Purpose:	19
Materials:	19
Procedure:	19
Data:	19
Results and Conclusion:	20
7. Achievements and final conclusion	20
8. References	20

1. Introduction Tyrocidine construct

Our goal was the expression of tyrocidine in *Bacillus subtilis*, a well-known model organism, in order to make tyrocidine accessible to further improvements by oligo mediated recombineering. With a size of 39.5 kb, the tyrocidine operon is too large for an amplification with standard PCR techniques. ¹ Therefore we have made efforts to create a construct which contains a toxic gene cassette flanked by two sequences which allow insertion of the tyrocidine operon via homologous recombination. The toxic gene is placed under control of the Pxyl promotor, which is repressed by the xylose responsive repressor XylR in the absence of xylose (see <u>BBa K733002</u>). If xylose is present, the repressor leaves the operator sequence. Thereupon Pxyl is active and the toxic gene is transcribed. The construct is flanked by two sequences homologous to the lacA sequence, which allow integration into the genome of *Bacillus subtilis*.

2. Methods & Materials

2.1. Preparation of parts

2.1.1. Amplification of parts by PCR

Parts were amplified by PCR reaction with Phusion® High-Fidelity DNA Polymerase according to the manufacturer's protocol, using template and primers as specified below. The PCR products were run on a 1% agarose gel to verify their length. The products were purified using QIAgen PCR purification kit and the concentration was determined by nanodrop.

Materials:

- Quick-Load® Purple 2-Log DNA Ladder –New England Biolabs
- Gel Loading Dye, Purple (6x) –New England Biolabs
- Phusion® High-Fidelity DNA Polymerase –New England Biolabs
- Phusion® HF Buffer –New England Biolabs
- DMSO –New England Biolabs
- 10 mM dNTP mix –New England Biolabs
- QIAgen PCR purification kit
- Biometra Thermocycler

- Primers according to the tables in the protocol¹
- DNA according to the tables in the protocol²

2.1.2. Digestion of pSBC13 plasmid backbone

The linearized plasmid pSB1CR was cut with EcoRI-HF and PstI. Samples were mixed according to the table below and incubated at 37°C, followed by heat inactivation at 80°C for 20 minutes. The reaction was verified by running the digested backbone on a 1% agarose gel.

Sample	Concentration (ug/mL)	Volume (uL)
NEB Buffer 2.1		8μL
EcoRI-HF		0.2
PstI		0.2
Linearized Plasmid DNA	25	8
H ₂ O		0.6
Total		10

Table: restriction digestion of pSBC13

Materials:

- EcoRI-HF –New England Biolabs
- Pstl –New England Biolabs
- Linearized pSB1C3
- Buffer 2.1 –New England Biolabs

2.2. Gibson assembly

The individual parts were assembled by Gibson Assembly. The parts were mixed with Gibson Assembly Master Mix and incubated at 50°C according to the manufacturer's protocol.

Materials:

• Gibson Assembly ® Master Mix –New England Biolabs

¹ Sequence of the primers can be found <u>here</u>

² Sequence of ordered g-blocks can be found <u>here</u>

• Biometra Thermocycler

2.3. **Transformation**

The Gibson assembled construct was transformed into top10 *E.coli* according to NEB's instructions and 100 μ L were plated on LB plates +CAM plates and incubated at 37°C overnight.

Materials:

• NEB 5-alpha Competent E.coli (High Efficiency) –New England Biolabs

2.4. Colony PCR

To determine whether the *E.coli* colonies were successfully transformed with the plasmid containing the assembled tyrocidine construct, a colony PCR was conducted. Individual transformants were suspended in $50~\mu L$ ddH₂O and lysed by keeping them at $99^{\circ}C$ for 7 min. $0.5\mu L$ of the samples were used as template per $25~\mu L$ reaction mix and a PCR was conducted according NEB's instructions, using the primers VF2 and VR.

Sample	Volume 25 μL (uL)	Volume x20 (uL)
5x Phusion Buffer	5	100
10 mM dNTPs	0.5	10
boiled colony sample	0.5	
Primer VF 2 (25 mM)	0.5	10
Primer VR (25 mM)	0.5	10
Polymerase Phusion	0.3	7
H ₂ O	17.7	354
Total	25	500

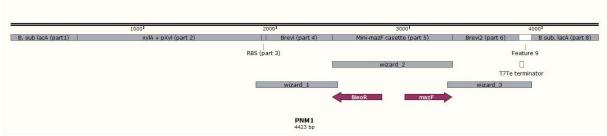
Table: colony PCR mastermix

PCR set-up

1 CK Set up			
initial denaturation	98 °C	30 s	
denaturation	98 °C	10 s	
annealing	59 °C	15 s	x 30
elongation	72 °C	2 min 30 s	

final extension 72 °C	5 min
-----------------------	-------

Table: colony PCR reaction conditions


3. Initial Tyrocidine construct overview

3.1. Introduction

B. Sub recombination site	1
XylA(repressor) + Promoter(repressor) (BBa_K733002)	2
Ribosome Binding Site	3
Brevibacillus recombination (start codon)	4
Selection marker + mazF	5
Brevi recombination (stop codon)	6
Terminator	7
B. Sub recombination	8

Table: individual parts of the Tyrocidine construct

In the initial experimental design, we aimed at cloning all parts into one plasmid. Two constructs were designed: One containing an additional terminator (part 7) and one without additional terminator. The construct contains sequences homologous to *B. subtlis* lacA (part 1 +part 8), *Brevibacillus parabrevis* (part 5 +part 6), a selection marker and toxic gene cassette (part 5), as well as a xylose repressor and promotor (part 2), a ribosome binding site (part 3), and optional an terminator (part 7).

Picture 1: Tyrocidine with terminator assembled part 1 to 8 (taken from SnapGene)

3.2. Preparation of parts for Tyrocidine expression

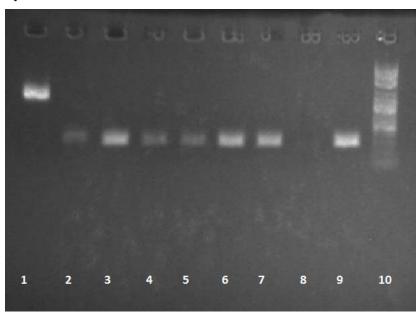
The individual parts were amplified by PCR.

				Annealing	
labelling	Part #	template	Primer	T.	size
A	pSB1C3	biobrick	priSB1C3_tyr-fwd	56°	~ 2kb
A	linearized	DIODITICK	priSB1C3_tyr-rev	54.7°	ZKU
В	Part 1	D subtilia 100 aDNA	priTyr_part1-fwd	55.3°	~F00 ba
В	Part 1	<i>B.subtilis</i> 168 gDNA	priTyr_part1-rev	54.8°	~500 bp
С	Part 2	DD2 K722002	priTyr_part2-fwd		~1.400 hp
C	Part 2	BBa_K733002	priTyr_part2-rev		~1400 bp
D Part 8 B.subtilis 168 gDNA		priTyr_part8-fwd		~E00 hn	
		B.SUDUIIS 100 gDNA	priTyr_part8-rev		~500 bp
E Part 6		Wizard3	priTyr_wizard_3-fwd		~E00 hp
	Parto	VVIZarus	priTyr_wizard_3-rev		~500 bp
F	Dart 0	D subtilis 169 aDNA	priTyr_part8-2-fwd	65°	~E00 hp
	Part 8	<i>B.subtilis</i> 168 gDNA	priTyr_part8-rev	59°	~500 bp

3.3. Tyrocidine construct Gibson assembly

The PCR amplified parts and the cut backbone pSB1C3 were assembled by Gibson assembly.

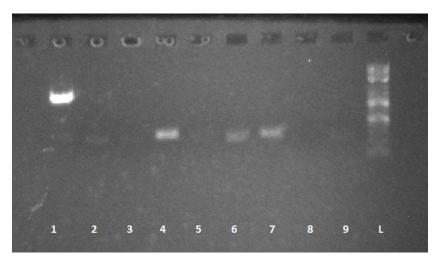
Construct 1 (with terminator)	Construct 2 (without terminator)
G-block: wizard_1	G-block: wizard_1
G-block: wizard_2	G-block: wizard_2
G-block: wizards_3	PCR: A
PCR: A	PCR: B
PCR: B	PCR: C
PCR: C	PCR: E
PCR: D	PCR: F


Table: parts used for the assembly of construct 1 and construct 2.

Tyrocidine	construct I			
	concentration in ng/μL	length (bp)	ng to use	μL
a1	15.1	2070	44.4015	2.94
b	20.75	500	10.725	0.52
С	12	1400	30.03	2.50
d	24	500	10.725	0.45
gWizard1	10	614	13.1703	1.32
gWizard2	20	907	19.45515	0.97
gWizard3	10	635	13.62075	1.36
				10.06
Picomole v	vector			
0.0325				

Turnosidino	Tyrocidine construct II				
Tyrociaine (construct II				
	concentration in	length	ng to use	μL	
	ng/μL	(bp)			
a1	15.1	2070	50.5494	3.35	
b	20.75	500	12.21	0.59	
С	12	1400	34.188	2.85	
е	61	500	12.21	0.20	
f	29	500	12.21	0.42	
gWizzard1	10	614	14.99388	1.50	
gWizzard2	20	907	22.14894	1.11	
				10.01	
Picomole Co	onc. Of vector				
0.037					

3.4. Tyrocidine construct Transformation and colony PCR


Tyrocidine construct I:

Gel: 08.08. tyrocidine construct I

lane 1	positive control
lane 2-9	colony samples of colonies 1-8 (from left to right)
lane 10	ladder

Tyrocidine construct II

gel: 08.08. tyrocidine construct II

lane 1	positive control
lane 2-9	colony samples of colonies 1-8 (from left to right)
lane 10	ladder

3.5. PCR troubleshooting

We further tried to amplify the cassette by amplifying the tyrocidine construct by running a PCR directly on the Gibson assembled product. The primers VR and VF2 were used. The bands were smaller than they should have been in the case of a correct assembly.

Primer 1	Primer 2	Size (bp)	Annealing T	Purpose
priTyr_part1-fwd	priTyr_part1-rev	500	58	Verify presence of part 1
priTyr_part1-fwd	priTyr_part2_rev	1900	58	Verify assembly of part 1 and 2
priTyr_part2_fwd	priTyr_part2_rev	1400	58	Verify presence of part 2
priSEQ-Tyr-3	priMini-Maz-BioB- rev	1650	58	Verify assembly of part 2-5
priSEQ-Tyr-4	priSEQ-Tyr-5	1200	60	Verify assembly of part 4-6
priSEQ-Tyr-4	priTyr_part8-rev	2000	58	Verify assembly of part 8 with

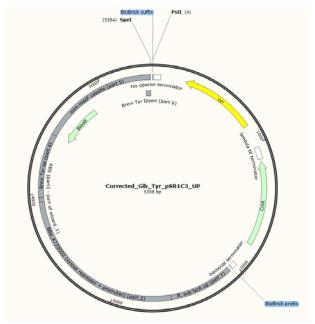
				construct
priMini-Maz-BioB- rev	priMini-Maz-BioB- rev	900	60	Verify presence of wizard 2
priTyr_part8-fwd	priTyr_part8-rev	500	58	Verify presence of part 8
VF2	priTyr_part1-rev			
VF2	priTyr_part2_rev			
VR	priTyr_part8-fwd			

3.6. Results and Conclusion:

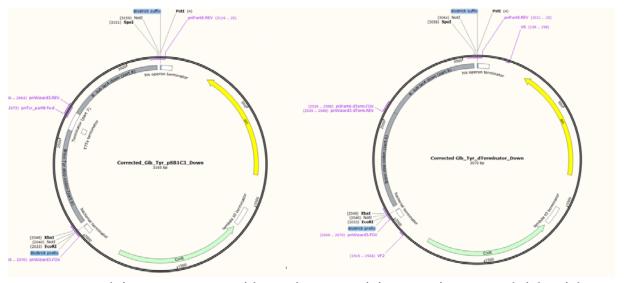
The digest of the miniprep and the colony PCR showed that the assembly did not work as expected. The bands observed by colony PCR were less than 2 kb in size, while the construct should be around 4.8 kb in size. In addition a PCR was run with the primers VF2 and VR2 but the bands were smaller than expected.

PCR reactions with different primers were run in order to identify the problem. Part 3, 4, 5, 6, 7 and 8 seemed to be assembled while part 2 could not be amplified. Some more PCRs today that showed that we could amplify from pSB1C3 into the Biobricks on either site, suggests that part 2 did not get assembled into the construct.

4. Tyrocidine expression by splitting up construct


4.1. Intro

As the first attempt to express tyrocidine did not work and the efficiency of Gibson assembly drops as the assembly size increases, an attempt was made to express the construct by dividing the parts up into two plasmids.


The "UP" construct was designed to contain the parts one to five in the pSB1C3 backbone, while the other parts were expressed either as "DOWN with Terminator" containing parts six, seven and eight in the pSB1C3 backbone or as "DOWN w/o Terminator" which was lacking part seven.

The constructs were designed in a way so that after successful assembly, they could be cloned to create the entire construct by ligating the "UP" construct digested with the restriction enzymes Spel and Pstl and the "DOWN with Terminator" or "DOWN w/o Terminator" digested with the restriction enzymes Xbal and Pstl.

B. Sub recombination	1
XylA(repressor) + Promoter(repressor) (BBa_K733002)	2
RBS	3
Brevibacillus recombination (start codon)	4
Selection marker + mazF wizard_2	5
Brevi recombination (stop codon)	6
Terminator	7
B. Sub recombination	8

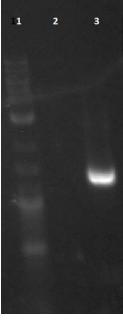
"UP" construct, taken from Snap Gene

Down construct: left: Down construct with Terminator containing parts six, seven and eight. Right: Down construct without Terminator containing parts six and eight.

4.2. Preparation of parts for Tyrocidine expression

The individual parts were amplified by PCR reaction.

the individual parts were amplified by recreaction.						
				Annealing		
labelling	Part #	template	Primer	T.	size	
Α	Part 1	B.subtilis 168 gDNA	priPart1.FOR	57°	567 bp	


			priTyr_part1-rev	53°°	
В	Part 2	2	priTyr_part2-fwd	55°	~1400 bp
Б	Part 2	BBaK733002	priTyr_part2_rev	56°	1400 bp
	Part 3 +4	wizzard1	no PCR, added directly	,	
С	Part 5	Wizard2	priPart_Wizard2.FOR	59°	049 hn
C	Part 5	VVIZaruz	priPart_Wizard2.REV	54°	948 bp
D	Part 6 +7	Wizard3	priWizard3.FOV	65°	657 hn
U		Wizaius	priWizard3.REV	60°	657 bp
			priWizard3.FOV	65°	
E	Part 6	Wizard3	priWizard3-	59°	567 bp
			dTerm.REV	39	
F	Part 8 (with	R cubtilic 168 aDNA	priPart8.rev	56°	573 bp
Г	Term.) B.subtilis 168 gDNA	priTyr_part8-fwd	54°	3/3 uh	
G	Part 8 (w/o		priPart8.rev	56°	E61 hn
U	Term.) B.subtilis 168 gDNA	priPart8-dTerm.FOV	59°	561 bp	

4.3. Tyrocidine construct Gibson assembly

The PCR amplified parts and the cut backbone pSB1C3 were assembled by Gibson assembly.

UP-construct	Down construct with T	Down construct w/o T
Cut plasmid	Cut plasmid	Cut plasmid
A =part 1	D	E
B =part 2	F	G
Wizard 1		
C =part 5 (w2)		

4.5. Results and Discussion

lane 1	marker
lane 2	UP-construct
lane 3	DOWN-construct

The Down construct could be successfully assembled. The length was verified by amplifying the sample with the primers VF2 and VR and running it on a 1 % agarose gel.

5. Tyrocidine Expression with XylR in separate plasmid

5.1. Intro

Since it seemed like the xylose repressor was the piece that was not assembling, another construct was designed, which does not include xylR. XylR could then be expressed in a separate plasmid.

This is the individual DNA parts:

B. Sub recombination	1
Promoter constitutive	2

Brevibacillus recombination (start codon)		
Selection marker + mazF wizard_2	4	
Brevi recombination (stop codon)		
Antibiotic reistance (zeocine)	6	
B. Sub recombination	7	

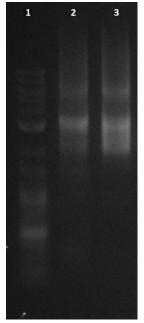
Use any of the g-blocks lambda beta, gp35 for promoter

5.2. Preparation of parts for Tyrocidine expression

The individual parts were amplified by PCR.

labelling	Part #	template	Primer	Annealing T.	size
A	Part 1	B.subtilis 168	Fragment1.FOR	60°	537 bp
		gDNA	Fragment1.REV	58°	
В	Part 2	gp35 in BB	Fragment2.FOR	60°	178 bp
		plasmid	Fragment2.REV	60°	
С	Part 4	Wizard2	Fragment4.FOR	60°	508 bp
			Fragment4.REV	60°	
D	Part 5	Wizard3	Fragment5.FOR	68°	450 bp
			Fragment5.REV	60°	
Е	Part 6 (w/o Term)	Wizard2	Fragment6.FOR	60°	567 bp
			Fragment6.REV	60°	_
F	Part 7	B.subtilis 168	Fragment7.FOR	59°	573 bp
		gDNA	Fragment 7.REV	58°	
3	Part 3	Wizard1	Fragment3.FOR	59°	596 bp
			Fragment3.REV	60°	_
G	Xylose Repressor	pDG268	pDG268neo-fwd-gibson	55°	~6000 bp
			pDG268neo-rev-gibson	54°	
Н	Plasmid for XylR	BBaK733002	xylR_fwd	57°	~1200 bp
			xylR_rev	55°	

Table: template DNA, primers, fragment size and annealing temperatures (taken from SnapGene) of all fragments.


The reaction and correct size of all fragments was verified by running the samples on a 1 % agarose gel.

5.3.1. Gibson assembly

The PCR amplified parts and the cut backbone pSB1C3 were assembled by Gibson assembly.

	[ng/µL]	length (bp)	μL	ng
	20	2070	3.42	68.31
Sample A	60	537	0.30	17.72
Sample B	40.5	178	0.15	5.87
Sample C	131	508	0.13	16.76
Sample D	141	450	0.11	14.85
Sample E	80	567	0.23	18.71
Sample F	74	573	0.26	18.91
Sample 3	102.7	596	0.19	19.67
H ₂ O			5.23	
Gibson MM			10	
total			20	

	[ng/µL]	length (bp)	μL	ng	pmole
G	36	6000	2.78	100	0.026
Н	14	1200	2.86	40	0.051
H2O			4.37		
Gibson			10		
total			20		

Gel: Tyrocidine construct

lane 1	ladder
lane 2	Tyrocidine construct
lane 3	Tyrocidine construct

5.3.2. Gibson assembly with DMSO

	[ng/μL]	length (bp)	μL	ng	pmol
G	36	6000	2.78	100	0.026
Н	14	1200	2.86	40	0.051
DMSO			0.20		
H2O			4.17		
Gibson			10		
total			20		

5.5. Results and Conclusion

With this new experimental design, all parts except for xylR could be successfully assembled and the size of the construct was verified by amplifying the construct by PCR and running the product on a gel. This suggests that is was not the size of the construct that prevented the assembly of the initial tyrocidine construct.

However, xylR could not be cloned into the plasmid by Gibson assembly.

6. Isolation of gDNA from Brevibacillus parabrevis, 31.07.15

Purpose:

Isolation of genomic DNA from Brevibacilus parabrevis

Materials:

- TNE buffer
- TNEX buffer
- lysozyme solution
- proteinase K
- 5 M NaCl
- 96 % EtOH
- TE
- Malt media
- Meat media

Procedure:

- 1. OD of samples was measured and the ones with the highest OD were chosen.
- 2. DNA isolation according to protocol "Isolation of chromosomal DNA from E.coli" from Grimberg J. et al 1989 with the following exceptions:
 - step 3: 2 hours incubation time (as recommended in protocol for isolation of *Bacillus lactis DNA*)

Data:

Grown in malt media: $OD_{600} = 1.87$ Grown in meat media: $OD_{600} = 1.73$

Results and Conclusion:

The samples grown in malt media had a higher OD.

The gDNA was stored at -20°C.

Brevibacilus parabrevis genomic DNA 1	3147.56 ng/μL	260/230: 1.99
Brevibacilus parabrevis genomic DNA 2	1797.92 ng/μL	260/230: 1.84
Brevibacilus parabrevis genomic DNA 3	2005.21 ng/μL	260/230: 2.01
Brevibacilus parabrevis genomic DNA 4	736.55 ng/μL	260/230: 1.30

7. Achievements and final conclusion

We have succeeded in assembling all parts needed for the expression of tyrocidine, except for xyIR, which we have been unable to assemble with all our various experimental designs.

The repressor was amplified by PCR using the <u>Biobrick BBa K733002</u> as template. The BioBrick has been used by the iGEM team Hong Kong University of Science and Technology 2012 (described <u>here</u>), which indicates that the biobrick is functional.

If given more time, the tyrocidine construct could be amplified with primers containing restriction sites and cloned into a plasmid which already contains XylR by classic cloning techniques, like the BioBrick BBa_K733002 or BBa_K733018. This plasmid could then be further amplified in *E.coli* and transformed into a *B.subtilis* strain which already has the xylose repressor integrated into its genome.

8. References

 Mootz, H.D., & Marahiel, M.A. (1997). The tyrocidine biosynthesis operon of Bacillus brevis: Complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. Journal of Bacteriology, 179(21):6843-50