

iGEM TU/e 2015

Biomedical Engineering

Eindhoven University of Technology Room: Ceres 0.04 Den Dolech 2, 5612 AZ Eindhoven The Netherlands Tel. no. +31 50 247 55 59 2015.igem.org/Team:TU_Eindhoven

NanoDrop

Table of contents

	/		
NanoDrop	/ 1	NanoDrop	3
	/ 1.1	Materials	3
	12	Satur & Protocol	2

1 NanoDrop

Estimated bench time: -

Estimated total time: 5 minutes start-up, 2 minutes per sample

Purpose: Determine the concentration of DNA samples.

You are working with DNA, so it is essential to work with gloves at all times to protect your plasmids from DNase activity.

1.1 Materials

- Autoclaved dH₂O
- \bullet dH₂0
- DNA samples
- Fiber-free tissues
- NanoDrop spectrophotometer
- Pipettes and tips

1.2 Setup & Protocol

- Start the NanoDrop spectrophotometer.
- Select the DNA measurement 'Nucleic Acid' in the NanoDrop menu.
- Clean the surface of the NanoDrop with dH₂O and a fiber free-tissue.
- Preform a calibration and blank measurement by entering one drop of 2 μ l autoclaved dH₂O.
- Clean the surface again and place 2 µl per sample on the NanoDrop and measure the concentration. Write down the concentration (possibly on cryo-babies to stick on the Eppendorf tube containing your DNA sample).