Gibson Assembly Method

Gibson Assembly Protocol

1. Set up the following reaction on ice:

	2-3 Fragment assembly	4-6 Fragment assembly	Positive control
Total amount of fragments	0,02-0,5pmols X μl	0,2-1pmols X μl	10 µl
Gibson assembly min (2X)	10 µl	10 µl	10 µl
Deionized H ₂ O	10 - X μl	10 - X μl	0 µl
Total volume	20 µl	20 µl	20 µl

- 2. Incubate samples in a thermocycler at 50°C for 15 minutes when 2-3 fragments are being assembled or 60 minutes when 4-6 fragments are being assembled. Following incubation, store samples on ice or at -20°C for subsequent transformation.
- 3. Transform DH 5-alpha competent E. coli cells with 2 μ l of the assembly reaction, following the transformation protocol.

Gibson Assembly Transformation Protocol

- 1. Thaw chemically competent cells on ice.
- 2. Add 2 μ l of the chilled assembly product to the competent cells. Mix gently by pipetting up and down or by flicking the tube 4-5 times. Do not vortex.
- 3. Place the mixture on ice for 30 minutes. Do not vortex.
- 4. Heat shock at 42°C for 30 seconds. Do not vortex.
- 5. Transfer tubes to ice for 2 minutes.
- 6. Add 950 μl of room-temperature SOC media to the tube.
- 7. Incubate the tube at 37°C for 60 minutes. Shake vigorously (250 rpm) or rotate.
- 8. Warm selection plates to 37°C.
- 9. Spread 100 μl of the cells onto the selection plates. Use Amp plates for positive control sample.
- 10. Incubate overnight at 37°C.