

iGEM TU/e 2015

Biomedical Engineering

Eindhoven University of Technology Room: Ceres 0.04 Den Dolech 2, 5612 AZ Eindhoven The Netherlands Tel. no. +31 50 247 55 59 2015.igem.org/Team:TU_Eindhoven

PCR Amplification

Table of contents

	/		
PCR Amplification	/ 1	PCR Amplification	;
	/ 1.1	Materials	;
	/ 12	Satur & Protocol	4

1 PCR Amplification

Estimated bench time: 30 minutes Estimated total time: 2 hours

Purpose: Amplification of DNA with the possibility of expanding the DNA sequence at the

beginning and/or end with the primers.

It is essential to work with gloves at all times to protect the DNA from DNase activity.

1.1 Materials

- Autoclaved H₂O
- Autoclaved PCR tubes
- Bucket with ice
- DNA to be amplified
- Forward primer
- Pipettes and tips
- Q5 High-Fidelity 2X Master Mix
- Reverse primer
- Thermal cycler

1.2 Setup & Protocol

• Construct a PCR mixture in the following way. Start with the component with the largest volume and end with the Master Mix. Keep the Master Mix on ice.

Component	Quantity/mass/final concentration	Volume (µI)
H₂O	Fill up to 50 µl	
DNA	10 ng	
Primer FW	0.5 μM (10 μM stock)	2.5
Primer RV	0.5 μM (10 μM stock)	2.5
Q5 High-Fidelity 2X Master Mix	1X	25
Total		50

- Mix well by pipetting up and down.
- Run the following PCR program:

Step	Temp (°C)	Time (sec)	Cycles
Initial denaturation	98	120 (2 min)	1
Denaturation	98	10	35
Annealing	X ¹	15	
Extension	72	20 sec/kb	
Final extension	72	600 (10 min)	1
Cooling	4	hold	1

¹ The annealing temperature can be calculated for the set of primers using New England Biolabs Tm calculator. An annealing temperature of 3°C lower than the lowest melting temperature was used to increase yields.