Marker Finder Program Report

Xu Luze
September 19, 2015

Contents
1 Overview

2 SSPD Method

2.1 Search for guide candidates
2.2 Specificity test for each guide candidate
2.2.1 PAM-proximal 12bp filtration by BLAST . .
2.2.2 Score filtration 0oL

2.3 Pair left and right guides with optimal spacer length

2.4 Design PCR fragments

3 Oligo Generator

LUt W wWwNN

1 Overview

To increase the accuracy and specificity of the detection, we develop an assay over our Paired dCas9
Reporter System to extract more sequence information out of the target genome. The core as well
as the first step of the design of array is to screen over the entire genome and get specific sequences
(CRISPR target sites) with high specificity as markers. We develop a method named SSPD to
achieve our aim, which is composed of 4 steps:

e Search for guide candidates

e Specificity test for each candidate

e Pair left and right guides with optimal spacer length
e Design PCR fragments

After the target sites having been chosen, we developed an Oligo Generator to turn the target
sites into oligonucleotides sequences for following sgRNA construction combined with our gRNA
generator (Part). And Python 3.4.3 and extension module BioPython-1.65 were then used to find
markers.

2 SSPD Method

2.1 Search for guide candidates

Firstly, we choose ‘*.fasta’ as our main file format passing sequence information between files and
the GenBank file with ‘.gb’, ‘.gbk’, ‘.gbff’ extension were converted to the fasta file by using Se-
qlO.convert in Bio module. Then we took advantage of Python 3.4.3 build-in regular expression
module re to search for left guide sequences of gRNA (‘(? <= cc).(? = .20)’) and right guide se-
quences of gRNA (‘(? <= .20).(? = gg)') separately, which would be paired later for PC reporter
system to function. As Supplementary 1 states, the two kinds of gRNA can form pairs with any
of the four PAM orientations. Marker_Finder_prepare.py is the program to realize this step, main
functions of it are listed below:

e gb_to_fasta: change file format from GenBank to fasta
e gRNA candidate_iteration: return the iteration of gRNA candidate

e gRNA _candidate: SeqlO.write the iteration into one file

def gb_to_fasta(targetname,target_filename):
SeqI0.convert(target_filename,’gb’,fastafilename,’fasta’)
def gRNA_candidate_iteration(dna_record, gRNA_flag):
dna = str(dna_record.seq).lower ()
if gRNA_flag == ’CCN’: # CCNN20
regexp = compile("(?<=cc).(?=.{20})")
for mat in regexp.finditer (dna):
yield SeqRecord(Seq(dnal[mat.start()+1:mat.start()+20+1]),
id=’{}|{}’.format (dna_record.id,mat.start()+2) ,description="")
each sequence with a special id composed of the target DNA’s id and the start
position of 20bp in the target DNA
elif gRNA_flag == ’NGG’: # N20NGG
regexp = compile (" (7<=.{20}).(7=gg)")
for mat in regexp.finditer (dna):
yield SeqRecord(Seq(dnal[mat.start()-20:mat.start()]),
id="{}|{}’.format (dna_record.id,mat.start()-20+1),description="")
def gRNA_candidates (dna_record,gRNA_flag,out_filename):
gRNA_iter = gRNA_candidate_iteration(dna_record,gRNA_flag)
SeqI0.write (gRNA_iter, out_filename, ’fasta’)

2.2 Specificity test for each guide candidate

2.2.1 PAM-proximal 12bp filtration by BLAST

first_filter.py is the program to realize this step, main functions are listed below:

first_filter_blast_db_iteration: return the iteration of gRNA candidate after first filtration
by blasting with database

first_filter_blast_sbjct_iteration: return the iteration of gRNA candidate after first filtra-
tion by blasting with subject(can be target itself)

first_filter_blast_extract_iteration: analysis the blast result to test the specificity of gRNA

first_filter_spec_test: if the off-target site has the same 12bp PAM-proximal sequences as
guide sequence of gRNA return true else return false

first_filter_db: SeqlO.write the iteration from first_filter_blast_db_iteration into one file

first_filter_sbjct: SeqlO.write the iteration from first_filter_blast_sbjct_iteration into one file

def first_filter_blast_db_iteration(in_filename ,database_name,gRNA_flag):

def

def

def

def

blastn_cline = NcbiblastnCommandline (query=in_filename, db=database_name, out=
blast_out_filename, evalue=10,
word_size=11,reward=1,penalty=-3,
gapopen=5, gapextend=2,outfmt=5,
num_threads=4)

stdout, stderr = blastn_cline ()

first_filter_blast_sbjct_iteration(in_filename,subject_filename,gRNA_flag):
blastn_cline = NcbiblastnCommandline (query=in_filename, subject=subject_filename,
out=blast_out_filename, evalue=10,
word_size=11,reward=1,penalty=-3,
gapopen=5, gapextend=2,outfmt=5)
stdout, stderr = blastn_cline ()

first_filter_blast_extract_iteration(in_filename, blast_out_filename,gRNA_flag,
self_flag=0):

gRNA_dict = SeqI0.index(in_filename,’fasta’,key_function=get_position)

blast_records = NCBIXML.parse(open(blast_out_filename))

return (gRNA_dict[position] for position in gRNA_dict if spec_flag_dict[position]

)
first_filter_spec_test (hsp,gRNA_flag):
if gRNA_flag == ’CCN’:
return hsp.query_start == 1 and hsp.match.startswithC [[[[[[[[[1]]?)
elif gRNA_flag == ’NGG’:
return hsp.query_end == 20 and hsp.match.endswithC || [[I[[[[I[]?)

first_filter_db(in_filename, out_filename, database_name,gRNA_flag):

blast_out_filename = first_filter_blast_db_iteration(in_filename, database_name,
gRNA_flag)

gRNA_iter = first_filter_blast_extract_iteration(in_filename,blast_out_filename,
gRNA_flag)

SeqI0.write (gRNA_iter, out_filename, ’fasta’)

first_filter_sbjct(in_filename, out_filename, subject_filename,gRNA_flag):

blast_out_filename = first_filter_blast_sbjct_iteration(in_filename,
subject_filename, gRNA_flag)
gRNA_iter = first_filter_blast_extract_iteration(in_filename,blast_out_filename,

gRNA_flag,1)
SeqI0.write (gRNA_iter, out_filename, ’fasta’)

2.2.2 Score filtration
second_filter.py is the program to realize this step, main functions are listed below:
e single_score: calculate the score of one single off-target site

e before_query_analysis, align_analysis,after_query_analysis: analyze the mismatch with-
in and beyond the range of align

e second filter_prepare: upload to BLAST again to find off-targets

e score_blast_extract,score_blast_db_extract: score guide sequences of gRNA partially on
self or on database

e gRINA score: score guide sequences of gRNA
e gRNA score filter: filter guide sequences of gRNA with low score or max off-target score

e second filter: SeqlO.write the reserved guide sequences of gRNA after score filtration into
one file

def single_score(mismatch_lst, gRNA_flag):
singlescore = 100*w / ((19-mean_distance)/19.0%4+1.0)/(mismatch_numx**2)
return singlescore

def before_query_analysis(hsp, target_sequence, subject_sequence, mismatch_list, rev=
False):

def align_analysis(hsp, mismatch_list, gap_list):

def after_query_analysis(hsp, target_sequence, subject_sequence, mismatch_list, rev=
False):

def score_blast_extract(score_gRNA_dict, maxscore_gRNA_dict, choose_gRNA_dict,
subject_filename, blast_outfile_dir,
gRNA_flag) :

def score_blast_db_extract(score_gRNA_dict, maxscore_gRNA_dict, choose_gRNA_dict,
subject_filename, blast_outfile_dir,
gRNA_flag):

def second_filter_prepare(filename_str, target_filename, database_name):
for gRNA_flag in [’CCN’, ’NGG’]:
upload to BLAST again
first_filter_blast_db_iteration(in_filename, database_name, gRNA_flag)
first_filter_blast_sbjct_iteration(
in_filename, target_filename, gRNA_flag)

def gRNA_score(choose_gRNA_filename, target_filename, target_blast_outfile_dir,
subject_filename,
subject_blast_outfile_dir, out_filename,
gRNA_flag) :
score_blast_db_extract (score_gRNA_dict, maxscore_gRNA_dict,
choose_gRNA_dict, subject_filename,
subject_blast_outfile_dir
, gRNA_flag
)
score_blast_extract (score_gRNA_dict, maxscore_gRNA_dict,
choose_gRNA_dict, target_filename, target_blast_outfile_dir,
gRNA_flag)

def gRNA_score_filter(infname, outfname, gRNA_score_threshold=45, max_score_threshold
=2):
if score > gRNA_score_threshold and max_score <= max_score_threshold:
1st.append(line)

def second_filter (choose_gRNA_filename, target_filename, target_blast_outfile_dir,
subject_filename,
subject_blast_outfile_dir, gRNA_flag,
gRNA_score_threshold=45,
max_score_threshold=2):
filedir = dirname(choose_gRNA_filename)
out_filename = ’{}\score_{}_gRNA.txt’.format(filedir, gRNA_flag)
gRNA_score(choose_gRNA_filename, target_filename, target_blast_outfile_dir,
subject_filename, subject_blast_outfile_dir, out_filename, gRNA_flag)
choose_filename = ’{}\choose_{}_gRNA.txt’.format(filedir, gRNA_flag)
gRNA_score_filter (
out_filename, choose_filename, gRNA_score_threshold, max_score_threshold)

2.3 Pair left and right guides with optimal spacer length

Firstly, we sorted the specific guide sequences by start position. Then we scanned the left gRNA
and stored the nearest right gRNA with optimal spacer length. Finally, show the paired gRNA as
markers on the user interface.

def spacer_finder_prepare(self, flag=0):

orientation_flag = self._Orientation_Var.get ()
if orientation_flag == 1:
self .spacer_finder (CCN, NGG, ’CCN_NGG’, flag)
elif orientation_flag == 2:
self.spacer_finder (NGG, CCN, ’NGG_CCN’, flag)
elif orientation_flag == 3:
self .spacer_finder (CCN, CCN, ’CCN_CCN’, flag)
elif orientation_flag == 4:

self .spacer_finder (NGG, NGG, ’NGG_NGG’, flag)

def spacer_finder (self, CCN, NGG,gRNA_str,sort_flag):
min_len = self._MinLengthVar.get ()
max_len = self._MaxLengthVar.get ()

2.4 Design PCR fragments

We provide two methods to determine PCR fragments. For the first, fix pair number k per fragment,
search the adjacent but non-overlapped k pairs. The results were sorted by fragment length, and we
named it as 'Fix Number Test’. For another, fix maximal PCR fragment length, the results were
sorted with pair numbers per fragment, and its name was 'Fix Length Test’. Sorted results would
be presented on user interface, enabling users to select fragments by themselves as needed. While
selecting overlapping fragment is not allowable for array design.

e fix number_cluster: Fix Number Test
e fix_length_cluster: Fix Length Test

e cluster_analysis: Show the information of selected cluster

def fix_number_cluster (self):

v_num = len(s)
group_num = 100
min_group_list = [[] for i in range(group_num)]
min_group_subject_len_list = [1000000 for i in range (group_num)]
k =0
while k < v_num:
group = []
start = s[k][0]
current = k
while current< v_num and len(group) < most_number:
group_len = s[current][1] - start + 1
group.append (current)
next = current+1

while next<v_num and isoverlap(s[current],s[next]):
next += 1
current = next
k += 1
if len(group)<most_number:
continue
i = group_num-1
if len(group)==len(min_group_list[i]) and group_len<
min_group_subject_len_list[i] or
len(group)>len(min_group_list[i]):
while i > 0 and \
(len(group)>len(min_group_list[i-1]) or
len(group)== len(min_group_list[i-1]) and
group_len

<
min_group_subject_1.
[
i
1
]
)
min_group_list[i] = min_group_list[i-1]
min_group_subject_len_list[i] = min_group_subject_len_list[i-1]
i-=1
min_group_list[i] = group
min_group_subject_len_list[i] = group_len

def fix_length_cluster (self):

v_num = len(s)
group_num = 100
max_group_list = [[] for i in range(group_num)]
k =0
while k < v_num:
group = []
start = s[k][0]
current = k
while current< v_num and s[current][1] - start + 1 <= max_len:
group.append (current)
next = current+1

while next<v_num and isoverlap(s[current],s[next]):
next += 1
current = next
i = group_num-1
if len(group)>len(max_group_list[i]):
while i > 0 and len(group)>len(max_group_list[i-1]):

max_group_list[i] = max_group_list[i-1]
i-=1
max_group_list[i] = group

k += 1

3 Oligo Generator

Detecting multi-site on pathogen genome can significantly enhance specificity and sensitivity. Using
SSPD method mentioned above, the target sites were designed on genome. However, designing
multiple target sites into oligonucleotides sequences for following sgRNA construction manually
can be laborious. Thus here we developed a supplementary program to facilitate oligo sequence
generation, which is combined with our gRNA generator. Specifically, we used Golden Gate Cloning
to make it more convenient to substitute guide sequences for different target sites. Here is the oligo
generator and its main function lines.

def oligo_generator (self,fix_test_name):
FW_left_gRNA = ’tagg’+revcmp(left_gRNA)

RV_left_gRNA = ’aaac’+left_gRNA
FW_right _gRNA = ’tagg’+right_gRNA
RV_right_gRNA = ’aaac’+revcmp(right_gRNA)

