An In-Depth Look into Affibodies Marvin Prein Molecular Bioengineering 01.06.2015 #### Review Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications J. Löfblom a, J. Feldwisch b,c, V. Tolmachev b, J. Carlsson b, S. Ståhl a,*, F.Y. Frejd b,c ## Structural basis for high-affinity HER2 receptor binding by an engineered protein Charles Eigenbrot^{a,b,1}, Mark Ultsch^a, Anatoly Dubnovitsky^c, Lars Abrahmsén^{d,1}, and Torleif Härd^{c,1} Department of Structural Biology and Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080; Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, SE-751 24 Uppsala, Sweden; and Affibody AB, Lindhagensgatan 133, SE-112 51 Stockholm, Sweden ^a Department of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden ^b Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden ^c Affibody AB, Lindhagensgatan 133, SE-112 51 Stockholm, Sweden #### Review Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications J. Löfblom a, J. Feldwisch b,c, V. Tolmachev b, J. Carlsson b, S. Ståhl a,*, F.Y. Frejd b,c ## Structural basis for high-affinity HER2 receptor binding by an engineered protein Charles Eigenbrot^{a,b,1}, Mark Ultsch^a, Anatoly Dubnovitsky^c, Lars Abrahmsén^{d,1}, and Torleif Härd^{c,1} Department of Structural Biology and Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080; Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, SE-751 24 Uppsala, Sweden; and Affibody AB, Lindhagensgatan 133, SE-112 51 Stockholm, Sweden ^a Department of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden ^b Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden ^c Affibody AB, Lindhagensgatan 133, SE-112 51 Stockholm, Sweden #### What are Affibodies? Staphylococcal protein A derivations Three-helical bundle structure Z-domain creation by mutations58 amino acids longCentral binding sequence includes13aa http://www.protein.pl/?name=repetitive_scaffolds #### The differences to Antibodies | Antibody | Affibody | |----------------------------|-----------------------------| | Large | Small | | High Abundance | Low Abundance | | Disulphide Bonds | No Disulphide Bonds | | Lower Heat Stability | Higher Heat Stability | | Lower Affinity/Specificity | Higher Affinity/Specificity | | Lower Chemical Stability | Higher Chemical Stability | #### Affibody Synthesis Techniques Usage of synthetic combinatorial libraries Phage display technology Microbial display-based systems Applying microbeads http://upload.wikimedia.org/wikipedia/commons/thumb/c/c9/PDB_1ss1_EBI.jpg/220px-PDB_1ss1_EBI.jpg #### **Affibody Applications** #### Affibody Applications - Imaging Most promising tracers Site-specific radiolabeling Help target tumors during MRI #### Affibody Applications - Therapy Targeting payloads Immunotoxins Radionuclides Affibody bound to albumin increases therapy treatments #### Affibody Applications - Biotechnology Affibody chromatography Immunoprecipitation Fluorescence-based assays Biosensors in FRET #### Review Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications J. Löfblom ^a, J. Feldwisch ^{b,c}, V. Tolmachev ^b, J. Carlsson ^b, S. Ståhl ^{a,*}, F.Y. Frejd ^{b,c} ## Structural basis for high-affinity HER2 receptor binding by an engineered protein Charles Eigenbrot^{a,b,1}, Mark Ultsch^a, Anatoly Dubnovitsky^c, Lars Abrahmsén^{d,1}, and Torleif Härd^{c,1} ^oDepartment of Structural Biology and ^bDepartment of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080; ^cDepartment of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, SE-751 24 Uppsala, Sweden; and ^dAffibody AB, Lindhagensgatan 133, SE-112 51 Stockholm, Sweden ^a Department of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden b Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden ^c Affihody AR Lindhagensgatan 133 SF-112 51 Stockholm Sweden #### HER2 as a target for cancer therapy HER2 (human epidermal growth factor receptor 2) as focus for SPACE-P Orphan receptor Multiple binding molecules mAb Trastuzumab & Pertuzumab **Z**_{HER2:342} (**ZHER2**) #### High affinity of HER2 to ZHER2 Affinity maturation Cycles of Protein Engineering $K_D = 22pM$ No competitive binding with other molecules Acts as a tracer through molecular imaging #### ZHER2 sequence structure and dynamics #### Concluding Remarks The HER2-binding affibody is thermodynamically stable and has a significantly high affinity towards HER2. Two conformations due to helix 1 folding differences Conformational dynamics may still increase affinity Non-competitiveness has a significant advantage # Thank you very much