```
globals
 water-color
                     ;;Background color
 male-fish-color
                       ::color of male fish
 female-fish-color
                       ;;color of female fish
                         ::color of feminized male fish
 feminized-fish-color
 bird-color
                    ;;color of birds
 algae-color
                     ;;color of algae
 fish-stride
                    ;;distance moved by fish
 bird-stride
                    ;;distance moved by bird
 bird-size
                    ;;size of bird sprite
 fish-size
                   ;;size of fish sprite
                      ;;max age of the birds
 bird-max-age
 fish-max-age
                      ;;max age of the fish
 bird-reproduction-age
                         ;;min age at which birds can reproduce
 fish-reproduction-age
                         ;;min age at which fish can reproduce
 max-fish-offspring
                        ;;max number of children fish can have at once
 max-bird-offspring
                        ;;max number of children bird can have at once
 fish-survival
                     ;;probability fish makes it to adult-hood
 fish-find-egg
                     ;;used to determine how likely a male fish impregnates egg
 bird-survival
                     ;;probability bird makes it to adult-hood
                    ;;used to determine how likely bird lays fertile egg
 bird-egg
 algae-growth-delay
                         ;;delay time before algae grows back
 algae-growth-rate
                        ;;amount of energy that algae grows back per tick
                         ;;max amount of food an algae can have
 algae-max-energy
 estrogen-concentration ;;total concentration of estrogen in lake
                        ;;ability of male fish to resist feminization
 estrogen-resistance
 estrogen-accumulated-max
                                ;;max amount of estrogen a male fish can store in body
breed [fishes fish]
breed [birds bird]
turtles-own [current-age max-age feminized? male? energy estrogen-accumulated]
patches-own [algae-energy countdown]
to setup
 clear-all
 set-patch-size 13
 set estrogen-concentration 0
 set estrogen-resistance 200.0
```

```
set estrogen-accumulated-max 0.01
```

```
set algae-max-energy 100
 set algae-growth-rate 10
 set algae-growth-delay 15
 set fish-survival
                     0.30
 set fish-find-egg
                      10
 set bird-survival
                     0.15
 set bird-egg
                     1
 set fish-size
                0.8
 set bird-size
                1.2
 set fish-stride 0.8
 set bird-stride 0.5
 set max-fish-offspring 2
 set max-bird-offspring 1
 set fish-max-age 100
 set bird-max-age 100
 set fish-reproduction-age 20
 set bird-reproduction-age 20
 set male-fish-color (cyan)
 set female-fish-color (pink)
 set feminized-fish-color (yellow)
 set water-color (blue)
 set algae-color (green)
 set bird-color(orange)
 set-default-shape fishes "fish"
 set-default-shape birds "bird"
 add-water
 add-fish
 add-birds
 reset-ticks
end
to add-water ;;Initializes algae clusters
 ask patches [
  set algae-energy random (algae-max-energy / 3.3)
  color-algae
 ]
end
to add-fish ;;initializes the fish
 create-fishes 400 [
```

```
set color male-fish-color
  set size fish-size
  set max-age fish-max-age
  set current-age 0 + random fish-max-age
  set feminized? false
  set male? true
  set energy 51 + random 50
  set estrogen-accumulated 0
  setxy random world-width random world-height
 create-fishes 400 [
  set color female-fish-color
  set size fish-size
  set max-age fish-max-age
  set current-age 0 + random fish-max-age
  set feminized? false
  set male? false
  set energy 51 + random 50
  set estrogen-accumulated 0
  setxy random world-width random world-height
 1
end
to add-birds ;;initializes the birds
 create-birds 75 [
  set color bird-color
  set size bird-size
  set max-age bird-max-age
  set current-age 0 + random bird-max-age
  set feminized? false
  set male? true
  set energy 51 + random 50
  set estrogen-accumulated 0
  setxy random world-width random world-height
 create-birds 75 [
  set color bird-color
  set size bird-size
  set max-age bird-max-age
  set current-age 0 + random bird-max-age
  set feminized? false
  set male? false
  set energy 51 + random 50
  set estrogen-accumulated 0
  setxy random world-width random world-height
 1
end
to move-bird;;procedure to rotate and move birds randomly
 rt random 50 - random 50
 fd bird-stride
end
```

```
to move-fish ;;procedure to rotate and move fish randomly
 rt random 50 - random 50
 fd fish-stride
end
to reproduce-fish;;procedure to hatch new fish at age 0
 let males (count fishes with [male? = true])
 let fertile-males (count fishes with [male? = true and feminized? = false])
 ;;Reproduction chance for female is based on number of males and base survival rate for eggs
 let reproduction-chance (fish-survival * (fertile-males / (males + fish-find-egg)))
 let reproduction-threshold random-float 1.0
 if (reproduction-chance > reproduction-threshold)
   ;;Spawns a random number of offspring
   let number-male-offspring (random (max-fish-offspring + 1))
   let number-female-offspring (max-fish-offspring - number-male-offspring)
   hatch number-male-offspring
    set color male-fish-color
    set size fish-size
    set max-age fish-max-age
    set current-age 0
    set feminized? false
    set male? true
    set energy 100
    set estrogen-accumulated 0
    rt random 360
    fd random 10
   hatch number-female-offspring
    set color female-fish-color
    set size fish-size
    set max-age fish-max-age
    set current-age 0
    set feminized? false
    set male? false
    set energy 100
    set estrogen-accumulated 0
    rt random 360
    fd random 10
   1
end
to reproduce-bird ;;procedure to hatch new birds
 let males (count birds with [male? = true])
 ;;Reproduction chance for female is based on number of males and base survival rate for eggs
 let reproduction-chance (bird-survival * (males / (males + bird-egg)))
 let reproduction-threshold random-float 1.0
```

```
if ((reproduction-chance > reproduction-threshold) and (count fishes > count birds))
   ;;Spawns a random number of offspring
   let number-male-offspring (random (max-bird-offspring + 1))
   let number-female-offspring (max-bird-offspring - number-male-offspring)
   hatch number-male-offspring
     set color bird-color
     set size bird-size
     set max-age bird-max-age
     set current-age 0
     set feminized? false
     set male? true
     set energy 51 + random 50
     set estrogen-accumulated 0
     rt random 360
     fd random 10
   hatch number-female-offspring
     set color bird-color
     set size bird-size
     set max-age bird-max-age
     set current-age 0
     set feminized? false
     set male? false
     set energy 100
     set energy 51 + random 50
     set estrogen-accumulated 0
     rt random 360
     fd random 10
   ]
  1
end
to eat-algae ;;allows the fish to eat algae
 ifelse algae-energy >= 3.5
  set algae-energy (algae-energy - 3.5)
 [set energy 0]
end
to eat-fish ;;allows the bird to eat a fish
 if (any? fishes-here) [
  ask one-of fishes-here [die]
  ifelse (energy \leq 100)
  [set energy energy + 15]
  [set energy 100]
 1
end
```

to grow-algae ;; After a random countdown equals 0 grow some algae

```
set countdown (countdown - 1)
 if (countdown \le 0)
  set algae-energy (algae-energy + algae-growth-rate)
  if (algae-energy > algae-max-energy) [set algae-energy algae-max-energy]
 if (algae-energy < 0) [set algae-energy 0]
 color-algae
end
to color-algae ;;Colors the algae a deeper green based on their energy
 ifelse (algae-energy > 0)
  [set pcolor (scale-color green algae-energy (algae-max-energy * 2) -50)]
  [set pcolor water-color]
end
to age-fish ;;fish life functions
 set current-age (current-age + 1)
 set energy (energy - 1)
 fish-death
end
to age-bird;;bird life functions
 set current-age (current-age + 1)
 set energy (energy - 10)
 bird-death
end
to fish-death ;;kills organism if they are to old or have not eaten in a while
 if (current-age > max-age) [die]
 if (energy < 0) [die]
end
to bird-death ;;kills organism if they are to old or have not eaten in a while
 if (current-age > max-age) [die]
 if (energy < 0) [die]
end
to store-estrogen; Male fish store estrogen in body
 if (estrogen-accumulated > 0) [set estrogen-accumulated estrogen-accumulated - 0.0005]
 if (estrogen-accumulated < 0) [set estrogen-accumulated 0]
 if (estrogen-accumulated < estrogen-accumulated-max) [
  ifelse (current-age < fish-reproduction-age) ;;Juvenile males are more affected by estrogen
  [set estrogen-accumulated (estrogen-accumulated + estrogen-concentration * 0.001)
  if (estrogen-accumulated > 0) [set estrogen-accumulated estrogen-accumulated - 0.0005]
  if (estrogen-accumulated < 0) [set estrogen-accumulated 0]
  [set estrogen-accumulated (estrogen-accumulated + estrogen-concentration * 0.0005)]
 1
end
```

to feminize-fish;;Each tick the male fish call this function. Simulates temporal effects of estrogen

```
store-estrogen
 let feminize-chance ((estrogen-concentration / estrogen-resistance) + estrogen-accumulated)
 let feminize random-float 1.0
 if (feminize-chance > feminize)
 set feminized? true
  set color feminized-fish-color
  set estrogen-concentration (estrogen-concentration - 0.0015)
end
to add-estrogen; The user can add estrogen to the lake. It increases chance male fish get feminized
 set estrogen-concentration (estrogen-concentration + estrogen-ppt)
 if (estrogen-ppt > 0)
  ask patches [
   set pcolor (scale-color violet estrogen-ppt 200 0)
  ]
 ]
end
to go;;Every tick call basic life functions of fish, birds, and algae
 if ticks >= 1000 and constant-simulation-length? [stop]
 ask fishes [
  move-fish
  ifelse male? = false
  [reproduce-fish]
  [feminize-fish]
  eat-algae
  age-fish
 ]
 ask birds [
  move-bird
  if male? = false
  [reproduce-bird]
  eat-fish
  age-bird
 ask patches [
  set countdown random algae-growth-delay
  grow-algae
 1
 tick
end
```