
set estrogen-accumulated-max 0.01
set algae-max-energy 100
set algae-growth-rate 10
set algae-growth-delay 15
set fish-survival 0.30
set fish-find-egg 10
set bird-survival 0.15
set bird-egg 1
set fish-size 0.8
set bird-size 1.2
set fish-stride 0.8
set bird-stride 0.5
set max-fish-offspring 2
set max-bird-offspring 1
set fish-max-age 100
set bird-max-age 100
set fish-reproduction-age 20
set bird-reproduction-age 20
set male-fish-color (cyan)
set female-fish-color (pink)
set feminized-fish-color (yellow)
set water-color (blue)
set algae-color (green)
set bird-color(orange)
set-default-shape fishes "fish"
set-default-shape birds "bird"
add-water
add-fish
add-birds
reset-ticks
end
to add-water ;;Initializes algae clusters ask patches [set algae-energy random (algae-max-energy / 3.3)
color-algae
]
end
to add-fish ;;initializes the fish
create-fishes 400 [

```
    set color male-fish-color
    set size fish-size
    set max-age fish-max-age
    set current-age 0 + random fish-max-age
    set feminized? false
    set male? true
    set energy 51 + random 50
    set estrogen-accumulated 0
    setxy random world-width random world-height
    ]
    create-fishes 400 [
    set color female-fish-color
    set size fish-size
    set max-age fish-max-age
    set current-age 0 + random fish-max-age
    set feminized? false
    set male? false
    set energy 51 + random 50
    set estrogen-accumulated 0
    setxy random world-width random world-height
]
end
to add-birds ;;initializes the birds
    create-birds }75\mathrm{ [
        set color bird-color
        set size bird-size
        set max-age bird-max-age
        set current-age 0 + random bird-max-age
        set feminized? false
        set male? true
        set energy 51 + random 50
        set estrogen-accumulated 0
        setxy random world-width random world-height
    ]
    create-birds 75 [
    set color bird-color
        set size bird-size
        set max-age bird-max-age
        set current-age 0 + random bird-max-age
        set feminized? false
        set male? false
        set energy 51 + random 50
        set estrogen-accumulated 0
        setxy random world-width random world-height
    ]
end
```

to move-bird ;;procedure to rotate and move birds randomly
rt random 50 - random 50
fd bird-stride
end
to move-fish ;;procedure to rotate and move fish randomly
rt random 50 - random 50
fd fish-stride
end
to reproduce-fish ;;procedure to hatch new fish at age 0
let males (count fishes with [male? = true])
let fertile-males (count fishes with [male? $=$ true and feminized ? $=$ false])
; Reproduction chance for female is based on number of males and base survival rate for eggs
let reproduction-chance (fish-survival * (fertile-males / (males + fish-find-egg)))
let reproduction-threshold random-float 1.0
if (reproduction-chance > reproduction-threshold)
[
;;Spawns a random number of offspring
let number-male-offspring (random (max-fish-offspring + 1))
let number-female-offspring (max-fish-offspring - number-male-offspring)
hatch number-male-offspring
[
set color male-fish-color
set size fish-size
set max-age fish-max-age
set current-age 0
set feminized? false
set male? true
set energy 100
set estrogen-accumulated 0
rt random 360
fd random 10
]
hatch number-female-offspring
[
set color female-fish-color
set size fish-size
set max-age fish-max-age
set current-age 0
set feminized? false
set male? false
set energy 100
set estrogen-accumulated 0
rt random 360
fd random 10
]
end
to reproduce-bird ;;procedure to hatch new birds
let males (count birds with [male? = true])
; Reproduction chance for female is based on number of males and base survival rate for eggs
let reproduction-chance (bird-survival * (males / (males + bird-egg)))
let reproduction-threshold random-float 1.0

```
    if ((reproduction-chance > reproduction-threshold) and (count fishes > count birds))
    [
        ;;Spawns a random number of offspring
        let number-male-offspring (random (max-bird-offspring + 1))
        let number-female-offspring (max-bird-offspring - number-male-offspring)
        hatch number-male-offspring
        [
            set color bird-color
            set size bird-size
        set max-age bird-max-age
        set current-age 0
        set feminized? false
        set male? true
        set energy 51 + random 50
        set estrogen-accumulated 0
        rt random 360
        fd random 10
        ]
        hatch number-female-offspring
        [
            set color bird-color
            set size bird-size
            set max-age bird-max-age
            set current-age 0
            set feminized? false
            set male? false
            set energy 100
            set energy 51 + random 50
            set estrogen-accumulated 0
            rt random 360
            fd random }1
        ]
    ]
end
to eat-algae ;;allows the fish to eat algae
    ifelse algae-energy >= 3.5 [
        set algae-energy (algae-energy - 3.5)
    ]
    [set energy 0]
end
to eat-fish ;;allows the bird to eat a fish
    if (any? fishes-here) [
        ask one-of fishes-here [die]
        ifelse (energy <= 100)
        [set energy energy + 15]
        [set energy 100]
    ]
end
```

to grow-algae ; After a random countdown equals 0 grow some algae

```
set countdown (countdown-1)
if (countdown <= 0)
[
    set algae-energy (algae-energy + algae-growth-rate)
    if (algae-energy > algae-max-energy) [set algae-energy algae-max-energy]
]
if (algae-energy < 0) [set algae-energy 0]
color-algae
end
```

to color-algae ;;Colors the algae a deeper green based on their energy
ifelse (algae-energy >0)
[set pcolor (scale-color green algae-energy (algae-max-energy * 2) -50)]
[set pcolor water-color]
end
to age-fish ;"fish life functions
set current-age (current-age +1)
set energy (energy - 1)
fish-death
end
to age-bird ;;bird life functions
set current-age (current-age +1)
set energy (energy - 10)
bird-death
end
to fish-death ;;kills organism if they are to old or have not eaten in a while
if (current-age > max-age) [die]
if (energy < 0) [die]
end
to bird-death ;kills organism if they are to old or have not eaten in a while
if (current-age > max-age) [die]
if (energy < 0) [die]
end
to store-estrogen ; MMale fish store estrogen in body
if (estrogen-accumulated >0) [set estrogen-accumulated estrogen-accumulated - 0.0005]
if (estrogen-accumulated <0) [set estrogen-accumulated 0]
if (estrogen-accumulated < estrogen-accumulated-max) [
ifelse (current-age < fish-reproduction-age) ; JJuvenile males are more affected by estrogen
[set estrogen-accumulated (estrogen-accumulated + estrogen-concentration * 0.001)
if (estrogen-accumulated >0) [set estrogen-accumulated estrogen-accumulated - 0.0005]
if (estrogen-accumulated <0) [set estrogen-accumulated 0]
]
[set estrogen-accumulated (estrogen-accumulated + estrogen-concentration * 0.0005)]
]
end
to feminize-fish ;;Each tick the male fish call this function. Simulates temporal effects of estrogen

```
    store-estrogen
    let feminize-chance ((estrogen-concentration / estrogen-resistance) + estrogen-accumulated)
    let feminize random-float 1.0
    if (feminize-chance > feminize)
    [
    set feminized? true
    set color feminized-fish-color
    set estrogen-concentration (estrogen-concentration-0.0015)
    ]
end
to add-estrogen ;;The user can add estrogen to the lake. It increases chance male fish get feminized
    set estrogen-concentration (estrogen-concentration + estrogen-ppt)
    if (estrogen-ppt > 0) [
        ask patches [
            set pcolor (scale-color violet estrogen-ppt 200 0)
        ]
    ]
end
to go ;;Every tick call basic life functions of fish, birds, and algae
    if ticks >= 1000 and constant-simulation-length? [stop]
    ask fishes [
        move-fish
        ifelse male? = false
        [reproduce-fish]
        [feminize-fish]
        eat-algae
        age-fish
    ]
    ask birds [
        move-bird
        if male? = false
        [reproduce-bird]
        eat-fish
        age-bird
    ]
    ask patches [
        set countdown random algae-growth-delay
        grow-algae
    ]
    tick
end
```

