iGEM EPFL: CpxR-IFP Stress Experiment

Materials

- Biliverdin hydrochloride 25 mM (Dissolved in 100% DMSO) [30891 SIGMA]
- L-(+)-Arabinose 20% (Dissolved in bi-distilled water) [A3256 SIGMA]
- LB Chloramphenicol (25 μg/mL)
- 250 ml Erlenmeyer
- 14 ml Polystyrene Round-Bottom Tubes

Procedure

- 1. Grow a starter culture overnight in 3ml of LB with the appropriate antibiotic
- 2. Transfer 40 μ l of the starter culture in 25 (ml) of LB with the appropriate antibiotic and grow in a 250 (ml) Erlenmeyer at 37°C with shaking at 180 rpm until reaching an OD₆₀₀ of 0.6
- 3. Transfer cells in 8% arabinose (1.2 ml) with 3(ml) of total volume [14 ml Polystyrene Round-Bottom Tubes] and grow for 2 hours at 37°C with shaking at 180 rpm
- 4. Thaw biliverdin for 5-10 min while protecting from light. Add 1 μ l of biliverdin hydrochloride 25 mM in the dark (no direct light) to get a final concentration of 8.33 μ M. Grow for 3 hours at 37°C with shaking at 180 rpm
 - ➤ <u>IMPORTANT</u>: Pipet Up and Down thoroughly (about 30 times) until biliverdin is solubilized!
- 5. Swirl the tubes 5-6 times to get the remnant biliverdin in the solution, centrifuge at 550 x g (2800 rpm on medium centrifuge) for 10 min, and wash subsequently in 320 μ l of PBS (except for KOH stress)
- 6. Calculate the volume of cells needed for $100~\mu l$ total volume and the appropriate stress. Transfer into 96 well plate for plate reading.
- 7. Read about 20 min without stress and then add stress and continue reading for 2 hours.

Annexe:

Read	Parameters
Fluorescence 100%	Emission: 640 nm
	Excitation: 708 nm
Fluroescence 70%	Emission: 640 nm
	Excitation: 708 nm
OD ₆₀₀	Absorbance: 600 nm