

iGEM TU/e 2014Biomedical Engineering

Eindhoven University of Technology Room: Ceres 0.04 Den Dolech 2, 5612 AZ Eindhoven The Netherlands Tel. no. +31 50 247 55 59 2014.igem.org/Team:TU_Eindhoven

Rolling Circle Amplification on cell membrane

General protocol and instructions on how to verify using FACS

Table of contents

Title Rolling Circle Amplification on cell membrane	1	Required materials	3
	2	Attaching DNA to cells	3
	3	Rolling Circle Amplification	3
	4	Verification with FACS	4

1 Required materials

- Prepare a batch off 10⁸ cells/mL expressing COMPx
- DNA-PEG₄-DBCO in dH₂O at 300 μM
- Solution of circular template in dH₂O or purer water
- Dissolve 1 mg of aphidicolin in 148 μL DMSO

Aphidicolin MW: 338.48

2 Attaching DNA to cells

- Add 200 μ L of cells with 2.2 μ L of DBCO-PEG₄-DNA in a tube (DBCO:COMPx = 200.5:1)
- Make sure you vortex the cells well before and after adding the DBCO-compound
- React the tube for 1h in shaking block at 4°C and 500rpm
- Spin down the cells for 5 min at 13,400 rpm and discard the supernatant
- · Resuspend with 1 mL ice cold PBS
- Spin down the cells for 5 min at 13,400 rpm and discard the supernatant

3 Rolling Circle Amplification

Prepare the following tube

Component	Quantity/mass/final concentration	Volume (µL)	
H ₂ O	To 50 μL	xx μL	
Circular DNA	50 nM	yy μL	
DNTPs	5 mM	25 µL	
10x Phi29 reaction buffer	1x	5 μL	
Annealed DNA	50 nM	5 µL	
Phi29 (100 U)	1 U/μL	5 µL	
Total		50 μL	

Put the tube in the heat shaking block on 30 °C for the desired time (advised is 4 hours). Add 2.1 μ L of the aphidicolin stock solution (final concentration ~400 μ M) to stop the reaction after the appropriate time.

4 Verification with FACS

- Spin down the cells for 5 min at 13,400 rpm and discard the supernatant
- Resuspend tube 2 in 200 μL ice cold PBS and add 10 μL of fluorescent primer stock (final concentration 16.7μM) solution and let primer anneal for 1 hour in heat shaking block at 4°C, shaking at 350 rpm.
- Spin down the cells for 5 min at 13,400 rpm and discard the supernatant
- Keep pellet in the fridge until FACS
- Just before FACS resuspend the cells in 200 μL ice cold PBS