Polymerase Chain Reaction (PCR)

Materials

- 10 mM dNTP mix
- 10 μM Forward primer
- 10 μM Reverse primer
- For High Fidelity enzyme amplification:
- High Fidelity Enzyme Mix (5U/μL)
- 10X High Fidelity PCR Buffer with 15 mM MgCl₂
- For Taq DNA Polymerase amplification:
- 10X Taq Buffer with (NH₄)₂SO₄
- 25 mM MgCl₂
- Taq Polymerase (5U/μL)
- **Apparatus**
 - Thermocycler (Applied Biosystems)

Method

1. After thawing and vortexing the solutions (except the enzyme solution), add the components in a sterile PCR tube in this following order and keep it on ice.

10X High Fidelity PCR Buffer with 15 mM MgCl ₂	5 μL	Taq Polymerase (5U/μL)	5 μL
10 mM dNTP mix	1 μL	10 mM dNTP mix	1 μL
10 μM Forward primer	1 μL	10 μM Forward primer	1 μL
10 μM Reverse primer	1 μL	10 μM Reverse primer	1 μL
DNA template Genomic DNA	10 pg- 1 μg	25 mM MgCl ₂	4 μL
High Fidelity Enzyme Mix	0,5 μL (2.5 U)	DNA template 10 pg- 1 μ Plasmid DNA	
Water, nuclease free	to 50 μL	Taq DNA Polymerase	0.5 (2.5U)
		Water, nuclease free	to 50 μL

- DNA template (10 pg to 1 μg)
- Water, nuclease free
- Thin walled PCR tubes

- 2. Spin the PCR tubes to collect all drops and immediately place the PCR tubes in the thermocycler, start the PCR reaction.
- 3. Thermal cycling protocol:

Obs: Because the primers used have more than 12 pb (including restriction sites) that don't anneal with the template in the first PCR steps, we decided to add 10 cycles with a lower temperature to favor the best annealing.

Step	Temperature (°C)	Time	Number of cycles
Initial denaturation	94-95	3 min	1
Denaturation	94-95	30 s	
Annealing	*Tm₁-5	30 s	10
Extension	72	1 min	
Denaturation	94-95	30 s	
Annealing	**Tm ₂ -5	30 s	25
Extension	72	1 min	
Final Extension	72	10 min	1
Кеер	4	∞	

^{*} Tm_1 = Melting temperature considering just the annealing primer region. Theoretically calculated by the IDT tools.

- Load a 5 μL sample and run an agarose gel electrophoresis (see the section Agarose Gel Electrophoresis and DNA Gel Purification)
 [http://2014.igem.org/wiki/images/a/af/Agarose Gel Electrophoresis and DNA Gel Purification.pdf].
- 5. If you see just one band in the gel of the expected size, you can purify the PCR product using Wizard SV Gel and PCR Clean-Up System kit (Promega). But if you see more than one band, you need to run a new gel with total sample, excise the band of interest and then purify (see the section Agarose Gel Electrophoresis an DNA Gel Purification)
 [http://2014.igem.org/wiki/images/a/af/Agarose Gel Electrophoresis and DNA Gel Purification.pdf].
- 6. Use Nanodrop Spectrometer (Thermo Scientific) to quantify the DNA fragment.
- 7. Store at -20°C.

^{**}Tm₂= Melting temperature considering the restrictions sites