Testing Antimicrobial Activity of Protein Filament

Part 1: Evaluating Methods of Sterilising Filament and Slime

Date: 8/7/14

Method

YPD Plates

1. Filament samples were placed aseptically on LB agar plates as follows:

- a. Freeze dried (stored in non-sterile water)
- b. Treated with Formic Acid (90%)
- 2. Controls were also set up as follows:
 - a. Positive Control touched with unwashed fingers
 - b. Negative Control unopened plate
- 3. These plates were incubated overnight at 37 degrees.

LB Plates

- 1. Filament samples were placed aseptically on LB agar plates as follows:
 - a. Freeze dried
 - b. Natural slime treated with DTT and Sodium Citrate
 - c. Freeze dried & treated with Formic Acid (90%)
- 2. Controls were also set up as follows:
 - a. Positive Control touched with unwashed fingers
 - b. Negative Control unopened plate
- 3. Plates were incubated overnight at 37 degrees.

Results

Table 1: Results of Sterility Testing on YPD Plates

Plate	Result	Comment
Positive Control	Growth	Plates required being left for two nights at 37 degrees before growth was seen.
Negative Control	No growth	
Freeze dried fibre	Growth	Had been stored in non- sterile water which may have caused growth. Suggests that fibre is not antimicrobial.
Fibre treated with Formic Acid	No growth	

Figure 1: No growth on Formic Acid treated Fibre (left), Growth on freeze dried fibre (middle), Growth on positive control (right)

Table 2: Results of Sterility Testing on LB Plates

	Plate	Result	Comment
1	Negative Control	No growth	
2	Positive Control	Growth	
3	Freeze dried fibre (sterile handling)	Growth	
4	Slime in buffer (DTT + Sodium Citrate)	Growth	
5	Fibre freeze dried & treated with Formic Acid	No growth	

Figure 2: Plates 1 & 2 (left), Plates 1-5 (middle), Plates 4 & 5 (right)

Conclusion

Treatment of sample with formic acid appears to sterilise filament without damaging structure.

Part 2: Evaluating Methods to Assess Antimicrobial Activity

Date : 15/7/17

Method

Test 3: Filter Paper Disc Method

- 1. Sloppy agar was inoculates with E. coli and S. aureus cells and then poured onto TSA plates and allowed to solidify.
- 2. Filter paper circles were cut with a diameter of 1 cm.
- 3. These were sterilised in the autoclave.
- 4. The discs were aseptically dipped into samples.
- 5. Excess liquid was allowed to drip from the discs before being placed onto sloppy agar TSA plates.
- 6. Plates were incubated overnight at 37 degrees.

Test 4: MIC using Well Plate

- 1. 50ul of TSB were pipetted into all 8 wells of row 4
- 2. An additional 40ul of TSB and 10ul of sample (Formic Acid + Protein) were added to well 1
- 3. 50ul from well 1 were pipetted into well 2 and mixed by pipetting.
- 4. This was repeated between wells 2 and 3, 3 and 4 etc. to create a serial dilution of protein.
- 5. This procedure was repeated on row 2 using TSB + E. coli cells and row 3, using TSB + S. aureus.
- 6. Well plate was incubated overnight at 37 degrees.

Results

Test	Cells	Sample				
		Chloromphenicol	romphenicol Protein + Protein +		MgCl ₂	Formic
			Formic Acid	Formic		Acid 90%
			+ MgCl ₂	Acid		
1	E. coli	Inhibition	Inhibition	inhibition	No	Inhibition
					inhibition	
	S. aureus	Inhibition	Inhibition	inhibition	No Inhibition	
					inhibition	
2	E. coli	Inhibition	Inhibition	inhibition	No	Inhibition

					inhibition	
	S. aureus	Inhibition	Inhibition	inhibition	No	Inhibition
					inhibition	
3	E. coli	Inhibition	No	No	No	No
			inhibition	inhibition	inhibition	inhibition
	S. aureus	Inhibition	No	No	No	No
			inhibition	inhibition	inhibition	inhibition
	Conrol	No growth	No growth	No growth	No	No
					growth	growth
4	E. coli	Inhibition (++)*	Inhibition	Inhibition	Inhibition	Inhibition
			(++++)	(D=6.4cm)	(+)	(D=8cm)
	S. aureus	Inhibition (++)	Inhibition	Inhibition	No	Inhibition
			(++++)	(D=6.8cm)	inhibition	(D=6cm)

^{*} Diameter of zone of inhibition : (+) - (++++)

Results of MIC

	Well							
Row	1	2	3	4	5	6	7	8
A. Control	-	-	-	-	-	1	-	-
B. E. coli	Protein	-	-	-	-	-	-	+
	seen							
C. S. aureus	Protein	-	-	-	-	-	+	+
	seen							

Growth = + // No growth = -

Conclusion

Zones of inhibition seen on tests 1-3 were too large to measure accurately. Dilutions of samples would have to be made. The disc assay (test 4) gave the clearest results – zones of inhibition were not overlapping on plate and could be measured. This assay could be used in future experiments to determine antimicrobial activity. For MIC o give results, correct concentration of protein must be known, which had not yet been determined in this experiment.

Part 3: Determination of Antimicrobial Activity of Natural Protein and of Gold Nanoparticles

Method

- 1. Sloppy agar was inoculated with E. coli, S. aureus and no cells (control)
- 2. The agar was poured onto TSA plates and allowed to solidify.
- 3. Sterile filter paper discs of 1cm diameter were dipped in samples (Formic Acid 90%, Gold nanoparticles in solution?, Protein + formic Acid (estimated 21.9 mg/ml), Chloromphenicol 21.9 mg/ml)

4. These were placed on plates using sterile forceps and incubated overnight at 37 degrees

Preparation of Protein and Chloromphenicol Dilutions

Sample	Calculation	Result
Chloromphenicol	C1V1=C2V2	21.9 mg/ml
(50mg/ml)	50 mg/ml (V) = 21.9 mg/ml (1ml)	
	V = 21.9 / 50	
	V = 0.438 ml	
	V = 438 ul Chloromphenicol	
	438ul sample + 562ul ethanol	
Protein (21 mg/ml)	Dry mass determined using 4 point	21mg/ml
	balance and dissolved in 1 ml Formic	
	Acid (90%)	

Results

	Sample					
Plate 2. Gold Nanoparticles		3. Chloromphenicol	4. Formic Acid 90%	5. Protein + Formic Acid		
Control (no cells)	No growth	No growth	No growth	No growth		
E. coli	No inhibition	Inhibition (D=3.1cm)	Inhibition (D=2.8cm)	Inhibition (D=3.5cm)		
S. aureus	No growth	No growth	Inhibition (D=3.5cm)	Inhibition (D=3.8cm)		

Conclusion:

Samples 2 and 3 on the S. aureus plate showed no growth, likely due to error. This may have been due to inoculating cells with a loop that was too hot, killing cells. Also cells may have been inoculated into agar that had not cooled sufficiently. However, for E. coli and S. aureus plates, protein + formic acid appeared to have greater inhibition than just formic acid or chloramphenicol. This suggests that the natural hagfish slime protein has antimicrobial activity.

References

1. http://www.scielo.br/pdf/bjm/v38n2/v38n2a34.pdf

Brazilian Journal of Microbiology (2007) 38:369-380 SCREENING METHODS TO DETERMINE ANTIBACTERIAL ACTIVITY OF NATURAL PRODUCTS

Cleidson Valgas1

; Simone Machado de Souza2

; Elza F A Smânia2

; Artur Smânia Jr.2