

iGEM TU/e 2014

Biomedical Engineering

Eindhoven University of Technology Room: Ceres 0.04 Den Dolech 2, 5612 AZ Eindhoven The Netherlands Tel. no. +31 50 247 55 59 2014.igem.org/Team:TU_Eindhoven

Insert + vector ligation

Table of contents

Title Insert + vector ligation Insert + vector ligation

1

3

1 Insert + vector ligation

- First determine the amount of vector you will need.
 - Aim for a 100 ng of vector: $\frac{100 \, ng}{[Vector]^{ng}_{\mu L}} = x \, \mu L \, \text{vector needed}$
- Now determine the amount of insert you will need:
 - We will need molar equality for the ligation to work.
 - Find the average number of bases in the insert (432bp for the repeat samples): N_a
 - Find the average number of bases in the vector: N_b
 - Molar equality is found by:

$$\frac{100 \, ng}{N_b} \times N_a = X \, ng \, of \, insert \, needed$$

 $N_A = (6,022\ 141\ 29 \pm 0,000\ 000\ 27) \times 10^{23}\ mol^{-1}$

• Instead of aiming for molar equality (to increase success rate) use 5 times X ng of the insert.

$$\frac{5 * X ng}{[Insert] \frac{ng}{\mu L}} = Y \mu L \text{ of insert needed.}$$

Component	Quantity/mass/final concentration	Volume (uL)
H ₂ O		Fill up to 20 µL
T4 Ligase Buffer 10x		2 µL
Insert DNA	X ng (stock ng/µL)	ΥμL
Vector DNA	100 ng (stock ng/μL)	X μL
T4 DNA ligase	0.01 μL (400 U/μL stock)	1 µL
Total		20 µL

Important: add the ligase at the very end!!

- Gently mix the solution by pipetting up and down
- Incubate at 25°C for 2 hours in a PCR machine
- Heat inactivate for 10 min at 65°C