

High Performance Liquid Chromatography (HPLC)

- The HPLC was used for substrate analytics. We were able to detect glucose, xylose, succinate and fumarate in the media.
- Sample preparation:
 - Centrifuge 1.5 ml of bacteria culture for 5 minutes at 14.000 rpm
 - o Transfer supernatant to a fresh tube. Avoid to resuspend the cells
 - · Add 2 μl of sodium azide (100g/L) to each sample.
 - Store the samples at -20 °C untill you analyse them by HPLC

• HPLC measurement:

- 750 μl of each sample are transferred into HPLC vials with a septum
- The samples are determined in duplicates together with two sets standards á three concentrations
- The concentration of the standards depends on the maximum expected carbon source concentration in the media

• Sample run:

- $^{\circ}$ It was used the VA 300/7.7 NUCLEOGEL SUGAR 810 H column for sample separation
- \circ Eluent was 3.5 mM H₂SO₄
- The column was heated at 65 °C and the injected sample volume was 20 μl
- Detection was achieved by conductivity measurement

- For performing enzyme assays with purified enzymes or crude cell extracts we were using following HPLC-MC system.
- HPLC: LaChromUltra (Hitachi Europe, United Kingdom)
- Analysis: microTOF-Q hybrid quadrupole / time of flight mass spectrometer (Bruker Daltonics, Bremen, Germany)
- Ionization: Electrospray ionization (ESI)
- Column: SeQuant ZICpHILLIC column (150 by 2.1 mm, Merck KGaA, Darmstadt, Germany)
- Solutions: 10 mM Ammonium bicarbonate solution (eluent A), acetonitrile (eluent B)
- Injection volume: 2 µl
- Flow rate: 150 µl min⁻¹
- Gradient $[t_{\min}$, % of eluent B]: t_o : 80%, t_{30} : 10%, t_{35} : 10%, t_{40} : 80%, t_{60} : 80%
- Negative ionization mode
- Internal mass calibration: Formate (0.1 M), in 50% (vol/vol) isopropanol

