Quantitative real-time PCR

Total RNA extraction using Trizol Reagent

- 1. Bacterial cells (3 mL) were harvested and resuspended in 0.5 mL culture medium to which 0.5 mL of TRIzol was added and thoroughly mixed by pipetting.
- 2. The mixture was incubated at $15 30^{\circ}$ C for 5 min and thoroughly mixed with 0.2 mL chloroform.
- 3. After incubating at room temperature for 2 3 minutes, sample was centrifuged at 4°C for 15 min at 12,000 x g. RNA in the aqueous phase was precipitated with 0.5 mL isopropyl alcohol.
- 4. Precipitated RNA was washed with 1 mL 75% alcohol and resuspended in RNase-free water.
- 5. Residual genomic DNA was removed by digestion with 1 unit of DNase I (Invitrogen) at room temperature for 15 minutes. DNase I digestion was terminated with 1 μL of 25 mM EDTA solution and further incubation at 65°C for 10 min.

Synthesis of first-strand cDNA

- 1. Random primers (0.5 μ L; Promega) was added to 1 μ g of DNase I-treated RNA and incubated at 70°C for 5 min, and then cooled on ice.
- 2. Reverse Transcription master mix (13.5 μ L) which consisted of 5x reaction buffer, 10 mM each of dNTP, RNaseOUT (40 units/ μ L; Invitrogen) and MMLV reverse transcriptase (200 U; Promega) was added and incubated at 37°C for 1 hour. The cDNA was stored at -20°C until ready to use.

Quantitative real-time PCR

Real-time PCR was performed using the StepOnePlus Real-time PCR system (Applied Biosystems) with SYBR green (KAPA Biosystems) as the fluorescent reporter dye.

- 1. RT-PCR mixture in 10 μ L consisted of 2 μ L of first-strand cDNAs, 0.18 μ L of each primer (10 μ M), 5 μ L of 2x KAPA SYBR FAST qPCR Master Mix and 0.2 μ L of 50x KAPA SYBR FAST ROX High.
- 2. Results were normalized to the 16S rRNA to determine the expression levels of various target genes. The gene-specific primers used are shown in Table 1 below. Gene expression levels in different samples were compared by

calculating the relative expression levels of mRNA using the comparative delta C_T (threshold cycle number) method. The following formula: $2^{-\Delta\Delta CT}$, where ΔCT is the difference in CT between the gene of interest and 16S rRNA, and $\Delta\Delta CT$ for the sample = (ΔCT for the treated sample - ΔCT of the control sample), was used for the calculation.

Table 1. Gene-specific primers for qRT-PCR analysis

Gene	Forward Primer Sequence 5'→3'	Reverse Primer Sequence 5'→3'
Target		
16S rRNA	CAGCCACACTGGAACTGAGA	GTTAGCCGGTGCTTCTTCTG
$\Delta 15$ desaturase	CAATTCCGGCAGATTGTTTT	TTCAGGGTTTTGCTTTTGCT
FadD	GGCACGGTAGTCAATTTCGT	TATTGCGGTGAGTCAGCATC
FadL	CCTTTGATGACAGCCCAGTT	CAGCCAGGCTTTACCTTCAG
TesA	TTCCTGTTCCTGGTCCTGTT	TGATGCTGTTTCAGCAGAGC