# De Novo Synthesizer

Cooper Union iGEM 2014

# What is De Novo Synthesis?

- Creation of DNA oligonucleotides
- Does not require a template strand

### **Problems**

- Expensive
- Takes long time
- Complicated steps

#### **Our Solution**

- De novo synthesis on microfluidic platform
- Protected Nucleotides w/ TdT
- Enables labs to produce in-house oligos
- Saves time & money
- Increases efficiency of research process

# De Novo Synthesizer



#### What is TdT?

- Terminal Deoxynucleotidyl Transferase
- Enzyme found in bovine
- Can add nucleotides to single stranded oligos
  - All other DNA enzymes can only add to double stranded DNA

# **Enzymes**

- 99% proteins
- Biological catalysts
- increase chemical reaction
- Not consumed in reaction
- Both fwd/rev reaction
- Highly selective



http://www.google.com/imgres?imgurl=&imgrefurl=http%3A%2F%2Fwww.slideshare.net%2Fmzsanders%2Fhow-enzymes-work&h=0&w=0&tbnid=Bx5MMOXZVpb5YM&zoom=1&tbnh=194&tbnw=259&docid=rH30GWBhamRTYM&tbm=isch&ei=V0rRU8jtJqOi0QWHwoDIBA&ved=0CAqQsCUoAq

#### Substrate

Molecule upon which an enzyme acts

### **Active Site**

 Area in which the enzyme binds to the substrate

## Free Energy

- Amount of energy system can work
  - ATP in the body
- Enzymes decrease
   free energy increase
   reaction rates

## **Transition State**



- Exists for a fleeting moment
  - cannot be isolated or directly observed.



## Michaelis-Menten Equation

Named after German biochemist Leonor
 Michaelis and Canadian Manadian Manadian Manadian

Models enzyme kineti

- $\circ$   $\nu$  = reaction rate
- [S] = concentration of
- [P]=concentration of [
- $V_{max}$  = maximum rate
- K<sub>m</sub> = substrate conce



# **Enzyme Kinematics**

- K<sub>M</sub> and V<sub>max</sub> are dependent on the rate constants
- Because ES is a transition state, it is in equilibrium with E+S
- Because enzymes are proteins, their kinetics are also effected by environmental factors such as salt concentrations, pH, temperature, and cofactors

$$K_M \stackrel{\text{def}}{=} \frac{k_2 + k_{-1}}{k_1} \approx K_D$$

$$V_{\text{max}} \stackrel{\text{def}}{=} k_{cat} [E]_{tot}$$

$$[E]_{\text{tot}} = [E] + [ES] \stackrel{!}{=} \text{const}$$

$$E+S \stackrel{k_1}{=} ES \stackrel{k_2}{\longrightarrow} E+P$$
Substrate binding Catalytic step

http://en.wikipedia.org/wiki/Enzyme\_kinetics

# **Conformational Change**

 When a molecule (proteins, enzymes, fats, etc.) changes its shape

#### Cofactor

- Non-protein
- Required for enzymatic activity
- Induces conformational change
- Not required by all enzymes



Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings

Fig. 2-18

#### Effector Molecule

- Molecule that ca activity
  - Activator, inhib

### Allosteric E

- Enzyme that ch
- Switches from a
- Cofactors used changes



## Progress so far

- Ligated pET28b<sup>+</sup>\_TdT
- Verified that TdT was cloned into the pET28b<sup>+</sup> vector'
- Tested TdT's functionality
- Attempted to clone TdT into pSB1C3

#### For the Future

- Express TdT in E. Coli
- Purify TdT from E. Coli
- Optimize synthesis protocol
- Create microfluidic platform

Q&A

## Activity—Directions

Pick the roles:
 Counter, Reaction, Inhibitor, Activator

- Reaction person will get a small spoon to transfer candies to the other cup
- Try bigger spoon
- Inhibitors will use tape to prevent transferring, and try transferring
- Activators will step in and help to aid transfer
- Counters will take time and count the candies

#### **Questions to Consider**

- Which reaction was the hardest?
  - Took the most time
  - Had least number of candies transferred during the same time period
- What other factors influence your reaction?
- What happened to the total number of candies in the containers?