Making Heat-Shock Competent Cells

(Modified from: http://openwetware.org/wiki/Preparing_chemically_competent_cells)

- 1. Grow a 5ml overnight culture of cells in LB media. In the morning, dilute this culture back into 25-50ml of fresh LB media in a 200ml conical flask. You should aim to dilute the overnight culture by at least 1/100.
- 2. Grow the diluted culture to an OD_{600} of 0.2 0.5. (You will get a very small pellet if you grow 25ml to OD_{600} 0.2)
- 3. Put eppendorf tubes on ice now so that they are cold when cells are aliquoted into them later. If your culture is X ml, you will need X tubes. At this point you should also make sure that your TSS is being chilled (it should be stored at 4°C but if you have just made it fresh then put it in an ice bath).
- 4. Split the culture into two 50ml falcon tubes and incubate on ice for 10 min.

All subsequent steps should be carried out at 4°C and the cells should be kept on ice wherever possible

- 1. Centrifuge for 10 minutes at 3000 rpm and 4°C.
- 2. Remove supernatant. The cell pellets should be sufficiently solid that you can just pour off the supernatant if you are careful. Pipette out any remaining media.
- 3. Resuspend in chilled TSS buffer. The volume of TSS to use is 10% of the culture volume that you spun down.
- 4. Add 100 μ l aliquots to your chilled eppendorfs, freeze with liquid nitrogen and store at -80° C.

Transformation of Heat-Shock Competent Cells

(Modified from http://openwetware.org/wiki/Transforming chemically competent cells)

- 1. Thaw competent cells on ice
- 2. Pipet 50 ul of cells and 2 ul of DNA into an eppendorf tube, mix gently
- 3. Incubate tubes on ice for 30 minutes
- 4. Incubate tubes in 42 °C for 1 minute
- 5. Incubate tubes on ice for 5 minutes
- 6. Add 200 ul of SOC
- 7. Incubate cells at 37 °C for 2 hours
- 8. Plate 125 ul of cell suspension onto an appropriate antibiotic LB-agar plate
- 9. Incubate overnight at 37 °C

Making Electrocompetent Cells

(modified from http://openwetware.org/wiki/Knight:Preparing electrocompetent cells)

- All steps should be carried out at 4 °C and the cells should be kept on ice whenever possible!
- 1. Make a 300 ml liquid culture of cells. When OD600 = 0,5 0,6 (-1,0), chill flask on ice.
- Pour 35 ml cell culture into 8 falcon tubes. Centrifuge cells 3000 rcf 10 minutes at 4
 °C. Discard supernatant, resuspend cells gently (do not vortex!) in 30 ml of ice cold
 water.
- 3. Centrifuge cells 3000 rcf 10 minutes at 4 °C. Discard supernatant and resuspend cells gently in 15 ml of ice cold water. Combine two tubes into one so that you'll have 4 tubes.
- 4. Repeat previous step and combine four tubes into two.
- 5. Centrifuge cells 3000 rcf 10 minutes at 4 °C. Discard supernatant and resuspend cells gently in 10% glycerol (as small amount as possible).
- 6. Pipet 100 ul of cell suspension into 0,5 ml eppendorf tubes
- 7. Shock freeze tubes with liquid nitrogen
- 8. Store at -80 °C
- 9. Before use, thaw tubes on ice

Transformation of Electrocompetent Cells

(modified from http://openwetware.org/wiki/Knight:Electroporation)

- 1. Chill electroporation cuvettes, DNA samples and eppendorf tubes on ice
- 2. Place appropriate antibiotic LB-agar plates in 37°C incubator to warm
- 3. Remove electrocompetent cells from -80°C freezer and thaw on ice
- 4. Pipet 60 ul of electrocompetent cells into pre-chilled tubes
- 5. Pipet 0,7µL of DNA ligation mix and add to electrocompetent cells. Swirl tip around gently in cells to mix DNA and cells
- 6. Place cells back on ice to ensure they remain cold
- 7. Turn on electroporator and set voltage to 2.5 kV (2mm cuvettes)
- 8. Transfer cell-DNA mixture to cuvettes
- 9. Tap the cuvette on the counter gently so that cells are at the bottom and to remove any air bubbles
- 10. Wipe off excess moisture from outside of cuvette
- 11. Place in chamber of electroporator
- 12. Slide the chamber in so that the cuvette sits snugly between electrodes
- 13. Pulse the cells with a shock by pressing button on electroporator

- 14. Remove cuvette from the chamber and immediately add 940 ul of SOC (room temperature). This step should be done as quickly as possible to prevent cells from dying off.
- 15. Transfer SOC-cell mixture to chilled eppendorf tube
- 16. Chill sample on ice for 2 mins to permit the cells to recover
- 17. Incubate tubes for 1 hour at 37 °C
- 18. Plate 150 ul (and the rest on another plate if needed) of transformation onto pre-warmed plate supplemented with appropriate antibiotic
- 19. Incubate plate overnight at 37°C.

Making SOC Broth

100ml 0,5 g Yeast extract 2 g Tryptone 0,05 g NaCl g KCl MgSO4 · 6 H2O H2O

autoclave

c=n/V, n=m/M, m=0,01L*221,322g/mol=2,213g

1M MgCl2: 2,213g MgCl2 · 7 H2O in 10ml of H2O 1M glucose: 18,02 g glucose in 100ml of H2O

autoclave separately

Add in the broth after autoclavation

- 1 ml 1M MgCl2
- 2 ml 1M glucose

Restriction Digestion

50 ul

1 ul

..... ul DNA (amount needed) ul H2O (to fill to tot vol. 50ul) 5 ul 10X NEBuffer 2 0,5 ul BSA (100X) 1 ul enzyme 1 Add enzymes last!

enzyme 2 Add enzymes last!

Program in thermocycler:

"37804" (incubation time can be prolonged if complete digestion needs to be assured.)

- 1. 30-60 min in 37 °C incubation
- 2. 20 min in 80 °C inactivation
- 3. 4 °C

Ligation

Remember to make a control without the insert! (just add 8 ul of H2O instead)!

20 ul

5 ul H2O

- 4 ul first Biobrick (digested)
- 4 ul second Biobrick (digested)
- 4 ul plasmid backbone (digested)
- 2 ul 10x T4 DNA Ligase Buffer (vortex and spin down before use!)
- 1 ul T4 DNA Ligase Add enzyme last!

If gel purified parts are used, calculate the amounts to match 250 ng vector and 3:1 ratio of insert:vector. Add H2O to fill up to 20 ul.

Program in the thermocycler:

"16804" (incubation time can be prolonged if difficult ligation)

- 1. 1,5h 16 °C:ssa incubation
- 2. 20 min 80 °C:ssa inactivation
- 3. 4 °C

PCR

200 ul

148 ul H2O

40 ul 5x buffer

4 ul Kapa (Hotstart) polymerase

6 ul 10mM dNTP

1 ul primer 1

1 ul primer 2

+ template (1 pg - 10 ng, too much can inhibit the process!)

Programs in thermocycler:

"BackBAmp" for backbone amplification

"ColPCR" for colony PCR

1. 30 s 98 °C

1. 3 min 95 °C

2. 10 s 98 °C

2. 10 s 95 °C

3. 20 s 55 °C

4. 2 min 72 °C

5. go to 2. 29 more times

6. 7 min 72 °C

7. 4 °C

3. 20 s 55 °C

4. 2 min 72 °C

5. go to 2. 29 more times

6. 7 min 72 °C

7.4 C°

Agarose Gel Electrophoresis

(modified from: http://openwetware.org/wiki/Knight:Agarose_gel_electrophoresis)

- 1. Add 50 ml 1X TAE to a conical flask.
- 2. Measure out sufficient agarose to cast either a 0,7% (0,35 g), 1,0% (0,50 g) or 1,2% (0,60 g) gel.
- 3. Add the agarose to the TAE buffer in the conical flask.
- 4. Swirl to mix.
- 5. Microwave the flask on high until the gel starts to bubble and is transparent.
- 6. Let cool by either sitting on bench top.
- 7. While gel is cooling, assemble casting trays and gel combs and verify that the trays are level.
- 8. Once gel is cooled so that it can be touched comfortably with your gloved hand, add one drop of ethidium bromide (NOTE: Ethidium bromide is an acute toxin and a strong mutagen, be cautious and dispose gloves immediately after handling it!)
- 9. Pour gel into casting trays.
- 10. Let gel sit until they are solidified.
- 11. Remove comb.
- 12. Place your gel in gel box.
- 13. Add 1X TAE buffer to gel box such that buffer just covers the top of the gel.
- 14. Load 10 µL of prepared ladder.
- 15. Mix 2 µL of loading dye with 10 µL of sample.
- 16. Place gel box cover on gel box such that your samples will run towards the positive, red electrode.
- 17. Run your gel at ~70-80 volts for 45-60 min (NOTE: running voltage and time depend on the agarose percentage and length of the DNA samples).
- 18. Visualize the gel with a gel imager.