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Abstract

We studied the distribution of expression levels amongst the cells of an Escherichia coli population carrying a gene-switching
network, known as the genetic toggle. We employed two green fluorescent protein (GFP) reporter proteins with different half-lives
and characterized the effect of isopropyl-�-d-thiogalactopyranoside (IPTG) inducer concentration on fluorescence distribution
characteristics. Our flow cytometric measurements indicated that there is a spread of fluorescence phenotypes of one to three
orders of magnitude, due to the highly heterogeneous nature of the cell populations under investigation. Moreover, the shape
of the distribution at a specific quasi-time-invariant reference state, defined for comparison purposes, strongly depended on
inducer concentration. For very low and very high inducer concentrations, the distributions at the reference state are unimodal.
On the contrary, for intermediate IPTG concentrations, two distinct subpopulations were formed below and above a single-cell
threshold, resulting in distributions with a bimodal shape. The region of inducer concentrations where bimodality is observed
is the same and independent of GFP half-life. Bimodal number density functions are not only obtained at the reference state.
Transient studies revealed that even in cases where the distribution at the reference state is unimodal, the distribution becomes
bimodal for a period of time required for the population to pass through the single-cell induction threshold. However, this feature
was only captured by the system with the reduced half-life GFP. A simple single-cell model was used to shed light into the effect
of inducer concentration and GFP half-life on the shape of the experimentally measured number density functions. The wide

ange of fluorescent phenotypes and the inability of the average population properties to fully characterize network behavior,
ndicate the importance of taking into account cell population heterogeneity when designing such a gene-switching network for
iotechnological and biomedical applications.
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. Introduction

It is a well-known fact that cells of isogenic popula-
ions exhibit different phenotypes. This phenomenon,
nown as cell-to-cell variability or cell population het-
rogeneity, has been observed and studied in many sys-
ems from the mid 1940s until today. Some of the most
epresentative experimental efforts include Delbrück’s
tudies of phage burst size variability (Delbruck, 1945),
owell’s observations on the variation in cell divi-
ion times for various strains of bacteria and differ-
nt conditions (Powell, 1956), studies of lac operon
xpression levels by Novick and Weiner (1957) and
aloney and Rotman (1973), Spudich and Koshland’s
ork on the tumbling and smooth-swimming states
f flagellated bacteria (Spudich and Koshland, 1976),
tudies on spore formation in Bacillus subtilis (Chung
nd Stephanopoulos, 1995), and work to differentiate
nd find inducer-dependence of extrinsic and intrinsic
ources of heterogeneity by Elowitz et al. (2002) using
rtificial genetic networks in Escherichia coli.

Cell population heterogeneity stems from several
ources. First, there are differences in the microenvi-
onments surrounding the cells. If cells “feel” different
nput signals, such as a toxin or food source, they will
ct differently one from the other. However, even in
niform environments cell populations still behave het-
rogeneously. Each cell of a population undergoes the
ell cycle during which it grows and then at a cer-
ain point it divides to yield two daughter cells. It has
een experimentally established that most molecules of
he mother cell excluding chromosomal DNA partition
nequally between the two daughter cells (Sweeney
t al., 1994; Tran et al., 2000; Kelleher et al., 2000;
ellaiche et al., 2001; Orgogozo et al., 2002). Thus,

he daughter cells initially have different intracellular
tates, and as a result, they exhibit different phenotypes.
ince each cell undergoes the cell cycle many times
efore it dies, this phenomenon repeats itself and leads
o a distribution of phenotypes amongst the cells of the
opulation. In addition to unequal partitioning of cellu-
ar material at division, cell population heterogeneity

ay result from stochastic phenomena at the single-
ell level which are unrelated to division. Specifically,

he phenotype of each cell is largely determined by the
unction of a well-known class of molecules, known as
egulatory molecules, which typically exist in very low
oncentrations. Therefore, their action can be purely
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tochastic. Hence, even cells which have identical con-
ent at a given point in time may exhibit differences in
tate and phenotype at the next instant. As a result, cell
opulation heterogeneity is tightly related to regulation
f gene expression.

Gene expression is regulated on a variety of levels,
rom before transcription to after translation (Alberts et
l., 2002). In bacterial systems, it is thought that most
enes are mainly regulated at the transcriptional level
Thieffry et al., 1998; Weinzierl, 1999). Transcriptional
egulation is performed by regulatory molecules that
an have positive or negative effects with respect to
xpression of the gene. However, naturally occurring
egulatory networks are usually highly interconnected
o each other and to various metabolic pathways, while
n many cases several of their functional aspects are
imply unknown. Thus, understanding the relationship
etween complex, natural regulatory networks and the
istribution of phenotypes at the cell population level
onstitutes a major challenge.

On the other hand, artificial gene regulatory net-
orks are typically simpler and consist of elements
ith well-defined, pre-determined functions, which do
ot interfere with the rest of cellular function. Thus,
hey offer the great opportunity to study in isolation
he complex interplay between cell population hetero-
eneity and specific regulatory architectures. In addi-
ion, since they are constructed de novo, they offer the
nique capability to engineer the cellular phenotype
y using combinations of such networks (Guet et al.,
002). Thus, their potential use for biotechnological
nd biomedical applications is theoretically enormous.
owever, in order to achieve such ambitious goals, it is
f fundamental importance to first investigate in detail
he relationship between simple artificial genetic net-
orks and cell population heterogeneity.
Several groups have designed artificial genetic net-

orks with distinct dynamical features, such as an
scillator (Elowitz and Liebler, 2000; Fung et al., 2005)
r a bistable genetic switch (Chen et al., 1993). Besckai
t al. have studied negative and positive feedback
enetic architectures and how various components and
onditions contribute to the level of gene expression
Becskei and Serrano, 2000; Becskei et al., 2001). In

his work we will focus on a particular artificial gene-
witching network, known as the genetic toggle, which
as constructed by Gardner et al. (2000). The network

s composed of two promoter–operator–repressor sets,
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ig. 1. Cartoon of the genetic toggle network in pTAK117, modified
rom Judd et al. (2000): P1 = PLs1con, R2 = lac repressor (lacI) (light
ircles), P2 = Ptrc-2, R1 = lambda repressor (cIts) (dark circles),
eporter = GFP (gfpmut3) (squares), inducer = IPTG (pentagons).

onnected in a mutually repressive way: expression of
ne repressor inhibits expression of the other repressor
see Fig. 1). This leads to each repressor competing
or dominance in the cell. In the corresponding plas-
id called pTAK117 that we used in this work, the two

epressors are the lac repressor and the temperature
ensitive cI (lambda) repressor from phage lambda.
he lac repressor inhibits the function of the Ptrc-2 pro-
oter controlling expression of the lambda repressor,
hich in turn inhibits the function of the PLs1con pro-
oter controlling expression of the lac repressor. The

table GFP variant gfpmut3 (Cormack et al., 1996) is
o-expressed with the lambda repressor, thus function-
ng as a reporter protein for lambda repressor expres-
ion levels. This two-gene network has two possible
tates. In the absence of inducers at low temperature,
ac repressors dominate (GFP expression is low). To
witch to domination of lambda repressors, the extra-
ellular inducer isopropyl-�-d-thiogalactopyranoside
IPTG, a lactose analog) can be added, which will bind
o the lac repressors and derepress cI expression. A
imilar genetic switch had also been constructed earlier
y Chen et al. (1991, 1993) using the same repressor
roteins but different promoters (�PL and tac) fused
ith different reporter genes (vibrio hemoglobin and

hroramphenicol acetyl transferase gene).

In their original work where the pTAK117 con-

truct was presented, Gardner et al. (2000) mainly
ocused on illustrating the presence of the two afore-
entioned states of the genetic toggle network. Using
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n experimental characterization assay consisting of
hree successive dilution steps and applying changes
n IPTG inducer concentration and temperature at dif-
erent points in time, they also showed the stability
f the induced and uninduced states in the pTAK117
ystem. Moreover, their flow cytometric measurements
f the entire fluorescent distributions at three IPTG
oncentrations revealed some interesting patterns at
he cell population level and clearly illustrated high
xtents of heterogeneous behavior. However, the half-
ife of gfpmut3 reporter protein is known to be more
han 24 h (Andersen et al., 1998), while the half-life
f the lambda repressor is of the order of 1 h (Keiler
t al., 1996). Thus, for a more complete understand-
ng of the relationship between the specific genetic
oggle architecture and cell population heterogeneity,
reporter protein with a half-life close to that of the

ambda repressor must also be used.
Multiple GFP variants have been employed by sev-

ral researchers for reporting promoter activity or pro-
ein expression levels. Bi et al. (2002) studied the
ynamics of cell death using two GFP variants with
ifferent half-lives. Their results showed that the desta-
ilized variant exhibited better dynamic characteristics.
urthermore, Sternberg et al. (1999) compared the use
f a stable and unstable GFP variant in studying cell
rowth in biofilms. They found that the stable GFP was
ood for estimating growth rates during exponential
rowth, but for less favorable or stable conditions than
chemostat, the unstable variant had distinct advan-

ages.
Motivated by the above considerations, we first con-

tructed a variant of plasmid pTAK117 containing a
educed half-life GFP gene (gfpaav) in place of gfp-
ut3. This new gfp is a variant of gfpmut3 itself,
utated by the addition of a degradation tag at the C-

erminus (Andersen et al., 1998). The excitation and
mission spectra of these proteins are very similar,
ssuring us that the only difference between these pro-
eins is in degradation rate. The approximate half-life of
fpaav is 60 min. We then performed detailed charac-
erization experiments with both the long and reduced
alf-life GFP reporter proteins. The distribution mea-
urements were carried out with flow cytometry, a high

hroughput method that quantifies light scattering and
uorescence properties of individual cells. The param-
ters relevant to this study are the two light scattering
roperties, forward and side scatter (measures of cel-
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ular size and internal complexity, respectively), and
reen and red fluorescence (FSC, SSC, FL1 and FL3,
espectively). Green fluorescence represents intracel-
ular GFP content, while red fluorescence represents
ropidium iodide (PI) content, a measure of viability.
ur experimental and modeling results aim at elucidat-

ng the level of control that IPTG and protein half-life
an exert on cell distribution characteristics.

. Materials and methods

.1. Strain

E. coli strain JM2.300 (lambda-, lacI22 rpsL135
StrR), thi-1, CGSC strain 5002) was used for all exper-
ments. This strain has a mutant lac repressor that is
on-functional. It was transformed with either plasmid
TAK117 or plasmid pGFPaav (see below). The cells
ere made chemically competent and transformed
ith plasmid as described in RbCl Transformation
rocedure for Improved Efficiency (1994).

.2. Plasmid construction

Two plasmids were used in this work. The first
ne, pTAK117 with the long half-life GFP was a
ift by Professor Collins. Standard methods were
sed for construction of the plasmid with the reduced
alf-life (pGFPaav) and polymerase chain reaction
Miller, 1992; Sambrook and Russell, 2001). The
fpmut3 was excised from pTAK117 by digestion
ith KpnI–NheI. The resulting 5366 bp fragment was

solated from a 0.8% NuSieve GTG agarose (ISC
ioExpress) tris-borate–EDTA gel using a Qiagen,
iaex II Gel Extraction Kit. The following primers

obtained from Integrated DNA Technologies, INC.)
ere used to amplify gfpaav from plasmid pZE21-
FPAAV (Elowitz and Liebler, 2000): N-terminus,
′GGAGAAAGGTACCATGCGTAAAGGAGAAG-
ACT3′ (the sequence in italics is the KpnI

loning site and the bold sequence the gfpaav

tart codon) and C-terminus, 5′AAGCTTGCTAGC-
TAAACTGCTGCAGCGTAGT3′ (the sequence in
talics is the NheI cloning site and the bold sequence
he gfpaav stop codon). Platinum Pfx DNA polymerase
Invitrogen) was used for DNA amplification with

RoboCycler Gradient 96 Temperature Cycler

s
T
g
o

ology 128 (2007) 362–375 365

Stratagene). The gfpaav PCR product was cleaned
sing a Wizard PCR Preps (Promega). The DNA was
hen digested with KpnI–NheI and DpnI to remove
ny template plasmid. After digestion the restriction
ndonucleases were removed using the Wizard PCR
reps kit and the gfpaav DNA was suspended in
e-ionized water. Two hundred and forty nanograms
f the gfpaav DNA was ligated to 80 ng of the 5366 bp
NA fragment using 400 units of T4 DNA ligase

New England Biolabs) in a total volume of 10 �L.
he ligation was performed at 16 ◦C for 18 h. Three
icroliters of the ligation reaction were transformed

nto E. coli JM2.300 chemically competent cells using
he RbCl procedure (1994). Luria-Bertani (LB) agar
lates and broth were used for growth and selection
f bacteria (Sambrook and Russell, 2001). All LB
gar plates and broth cultures contained 50 mg L−1

mpicillin. Transformants were selected on LB
gar plates containing ampicillin. After selection,
lasmid was isolated from LB broth cultures for
creening with NdeI. One plasmid was chosen that
ad the correct banding pattern after digestion with
deI for conformation of the gfpaav insert by DNA

equencing (LS Labs, Inc.). The primers used for
equencing flanked the gfpaav gene: N-terminus, 5′-
GGCATCAAATTAAACCACACC-3′, C-terminus,
′-CCAAAACAGCCAAGCTAGCG-3′. After the
fpaav sequence was confirmed the plasmid was named
GNB10030. It is referred to in this paper by its gfp
ariant, pGFPaav.

.3. Shake flask experiments

Cells were grown to exponential phase in a sin-
le shake flask. First, cells were grown overnight in
mL of LB medium (10 g/L NaCl, 10 g/L BactoTryp-

one (BD Biosciences), 5 g/L yeast extract (Fisher
ioTech), 100 mg/L ampicillin (Fisher BioTech)) for
2 h and then subcultured at a low cell density
∼1–2000 cells/mL) in 400 mL of prewarmed and aer-
ted LSRB medium (4 g/L NaCl, 10 g/L tryptone, 5 g/L
east extract, 100 mg/L ampicillin, the appropriate con-
entration of IPTG (Fisher BioTech)) in the range of
0–2000 �M at 32 ◦C, shaking at 250 rpm in an orbital

haker (New Brunswick Scientific), covered from light.
he 2 L flasks were capped with foam to allow oxy-
en transfer. Samples were withdrawn approximately
nce per generation (40 min) until the cultures started to
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Fig. 2. Optical density (OD ) as a function of time for
[
u
a

t
t
m
S
u
d
w
N
b
k
s
w

2

i
2
c
r
a
f

2

B

i
fi
F
F
e
a
T
e
E

2

fl
a
h
d
2
d
e
a
c
c
v
(
g
v
F
e
(

2

c
s
i
D
d
l
f
(
g

600

IPTG] = 30 �M. The cell population remains in exponential phase
ntil about 700 min, after which point it starts to transition to station-
ry phase.

ransition to stationary phase (see Fig. 2 for a represen-
ative optical density (OD600) curve. Cell density was

easured using a spectrophotometer (Bausch & Lomb,
pectronic 1001) at 600 nm. Samples were not taken
ntil cells reached an OD600 of approximately 0.0001
ue to the low initial cell concentration. Cells were
ashed twice in cold PBS (58 mM Na2HPO4, 17 mM
aH2PO4, 68 mM NaCl, in Milli-Q H2O, pH adjusted
etween 7.3 and 7.4, filter sterilized). The samples were
ept on ice and shielded from light before being mea-
ured with the flow cytometer. Triplicate experiments
ere performed for each IPTG concentration.

.4. PI staining

Propidium iodide (PI) is used to identify dead or
njured cells (Alsharif and Godfrey, 2002; Lewis et al.,
004), as PI can traverse the membrane of cells with
ompromised membranes and bind to the DNA (fluo-
escing red). The cells were stained with PI (Sigma) at
concentration of 2 mg/L and left at room temperature

or 5 min.
.5. Flow cytometry

The flow cytometer used was a FACScalibur (BD
iosciences), with a 15 mW, 488 nm, air-cooled argon-

3

t

ology 128 (2007) 362–375

on laser. All parameters were logarithmically ampli-
ed, with the following settings: FSC E01, SSC 381 V,
L1 601 V, FL2 500 V, FL3 575 V. Compensation of
L1–0.9% FL2 was applied to remove overlap of PI
mission spectra into FL1. A side scatter threshold was
pplied to gate out much of the noise (at channel 130).
wenty thousand to 40,000 events were collected for
ach sample. The flow cytometer was calibrated with
GFP calibration beads (Clontech).

.6. Gating data

Gates were applied in the post-processing of the
ow cytometer files according to red fluorescence (PI)
nd light scattering. Cells that stained strongly with PI
ad lower green fluorescence than the rest, possibly
ue to GFP leakage out of the cells (Lehtinen et al.,
004). Since these cells did not represent the network
ynamics, all cells staining strongly with PI were
xcluded. Moreover, since E. coli cells are so small
nd close to the size of the debris being sensed by the
ytometer, gates were applied to better identify the
ells. After observing the change in light scattering
alues while the culture was in exponential phase
between 300 and 700 min), identical FSC and SSC
ates were applied to include events above a linear
alue of 30 (channel value of 378). Additionally, an
L3 (red fluorescence) gate was applied to exclude
vents above a relative red fluorescence level of 40
channel value of 410), excluding dead or injured cells.

.7. Software

First, the listmode files from the flow cytometer were
onverted from fcs format to ASCII format with MFI
oftware (Martz, 1992), after confirming that FACScal-
bur data can be successfully converted using MFI.
ata were then processed with a FORTRAN code we
eveloped to apply the aforementioned gates and calcu-
ate average fluorescence per cell and number density
unctions, excluding events in the first or last channel
Leary, 1998). Graphs were constructed with Kaleida-
raph (Synergy Software, Version 3.52).
. Experimental results

In order to assess the effects of inducer concen-
ration and GFP half-life on cell distribution charac-
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Fig. 3. Defining the reference state. All results at [IPTG] = 100 �M.
Filled circles: pTAK117; open circles pGFPaav. (a) Average forward
scatter (FSC) as a function of time. (b) Average green fluorescence
S. Portle et al. / Journal of B

eristics it is important to first choose a point where
he distributions will be compared to each other. Typi-
ally, comparisons are made at the same point in time
e.g. Gardner et al., 2000; Khlebnikov and Keasling,
002). However, cellular physiology changes not only
s a function of time, but also as a result of different
xtracellular conditions. Thus, it is more meaningful to
ompare distributions when cell cultures grown under
ifferent conditions exhibit similar qualitative behav-
or.

Fig. 3a and b shows a representative example of the
ime evolution for the average FSC (a measure of cell
ize), and average green fluorescence of the entire cell
opulation for both strains and for [IPTG] = 100 �M.
otice that independent of GFP half-life, the average
opulation properties initially increase with time. They
ubsequently reach a plateau lasting for approximately
hree generations (460–540 min), while afterwards, the
verage size and average fluorescence start dropping
ith time as the cells prepare to enter into the station-

ry phase. Moreover, during the period of time where
he average population properties reach a plateau, the
uorescence number density functions become practi-
ally indistinguishable from each other (Fig. 3c). Very
imilar qualitative behavior was observed for all other
PTG conditions studied.

Thus, based on these observations, green fluores-
ence distributions were compared at points in time
here the average properties reach this characteristic
lateau and the number density functions overlap. This
uasi-steady-state of the cell population will hence-
orth be referred to as the “reference state”. We note
hat the aforementioned definition of the reference state
s in the spirit of that of balanced growth, according
o which a batch cell culture reaches the state of bal-
nced growth when the number density function with
espect to all cellular properties becomes time-invariant
see Fredrickson et al., 1967 for a thorough discussion).
owever, it is impossible to measure all cellular char-

cteristics. More importantly, due to the existence of
tationary phase, it is not realistic to expect that the
umber density function will stay forever in a time-
nvariant state.

It was found that for low (below 30 �M) and high

above 50 �M) IPTG concentrations the reference state
as reached at either 500 or 540 min starting from an

nitial cell concentration of 2000 cells/mL, well before
ells exit logarithmic phase (they start changing to sta-

as a function of time. (c) Number density function for pGFPaav at
t = 460 min (solid line), 500 min (dashed line) and 540 min (dotted
line). Number density functions practically overlap for three gener-
ations, while the average FSC and green fluorescence remain almost
the same (holds true regardless of GFP half-life and [IPTG]).
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Fig. 4. Average green fluorescence at the reference state as a func-
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Fig. 5. Number density functions at the reference state for different
inducer concentrations. (a) pTAK117 and (b) pGFPaav as determined
by flow cytometry as described in methods. Included are scatter plots
of FL1 vs. FSC for each variant, showing that each subpopulation
o
t
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w
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g
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ion of inducer concentration. Filled circles: pTAK117. Open circles:
GFPaav. Error bars represent the standard deviation based on trip-
icate experiments. Some error bars are smaller than the markers.

ionary phase in FSC and SSC as stated above just after
hose values plateau). However, for intermediate IPTG
oncentrations (30–50 �M) more time is required for
he reference state to be reached. It was found that
PTG concentration does not affect the growth rate of
he culture. Moreover, no differences were found in
he time to reach the reference state between the GFP
eporter proteins. Therefore, this qualitative difference
or intermediate IPTG concentrations was attributed
o the balance existing between the lambda and lac
epressor concentrations, which in turn leads to slower
volution of the genetic toggle dynamics at intermedi-
te [IPTG] (see also modeling section). Thus, in order
o avoid reaching the stationary phase before the afore-

entioned criteria for the reference state are met at
ntermediate [IPTG] lower initial cell concentrations
ere used (1–10 cells/mL).
After establishing a reference state where compar-

sons are meaningful, we focus on the experimental
haracterization of the state of the entire cell popula-
ion. Fig. 4 shows the average relative green fluores-
ence at the reference state as a function of [IPTG] for
oth markers. Due to the structure of the genetic toggle

etwork and the biological function of the inducer, the
verage fluorescence exhibits a monotonically increas-
ng, sigmoidal dependence on [IPTG]. A relatively
harp rise in average fluorescence is observed for both

F
d
f
F

f the bimodal distributions have the same FSC (size) range, and
herefore differences in fluorescence are not due to age of the cells.

TAK117 and pGFPaav between 20 and 60 �M above
hich the average fluorescence remains at maximal

evels. Since the green fluorescent protein encoded by
fpaav has a shorter half-life than that expressed by the
fpmut3 gene present in pTAK117, the average fluores-
ence levels of the cell cultures with the former gene
re lower than those carrying the latter.

One would obtain only limited understanding of
etwork behavior if the experimental characterization
ere based solely on average population properties. A
uch more in-depth insight is obtained by studying the
uorescence distributions of the entire cell population.

ig. 5a and b shows the number density functions for
ifferent inducer concentrations at the reference state
or both pTAK117 (Fig. 5a) and pGFPaav (Fig. 5b).
irst, notice that expression levels vary by one to even
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hree orders of magnitude for some [IPTG]. Thus, the
ell populations appear very heterogeneous while the
xtent of heterogeneity strongly depends on [IPTG].

Moreover, for low (below 30 �M) and high (above
0 �M) [IPTG], all number density functions are uni-
odal. However, in the intermediate range of [IPTG],
here the transition from low to high average expres-

ion level occurs (see Fig. 4), the number density func-
ions are bimodal. There appears to be a clear threshold
t the single-cell level for these intermediate IPTG con-
entrations. The cells below and above this threshold
orm well-defined subpopulations, which lead to the
bserved bimodality. We note that Gardner et al. (2000)
lso reported bimodal distributions for pTAK117 at
IPTG] = 40 �M using a different experimental proto-
ol, while our results show bimodal number density
unctions for [IPTG] between 30 and 50 �M for both
eporter proteins. Therefore, these results indicate that
he specific genetic architecture at the single-cell level
eads to this characteristic bimodality feature at the cell
opulation level for intermediate inducer concentra-
ions.

Despite the fact that the range of [IPTG] for which
he number density function is bimodal is the same
or both reporter proteins, there are significant differ-
nces between pTAK117 and pGFPaav in the value of
he single-cell threshold separating the two subpopu-
ations forming the bimodal distributions. Specifically,
s estimated by eye in Fig. 5a and b, the switch between
ow and high expression levels occurs at relative fluo-
escence values around 300 and 4 for pTAK117 and
GFPaav, respectively.

Notice also that for both reporter proteins, at high
PTG concentrations, the unimodal number density
unctions practically overlap one with the other. More-
ver, the high fluorescence parts of the bimodal number
ensity functions obtained at intermediate induction
evels appear to be centered around the same mean
uorescence value. Thus, it appears that for [IPTG]
bove 30 �M and for a range of [IPTG] nearly two
rders of magnitude (up to 2 mM), all cells crossing
he single-cell threshold become maximally induced.
n the contrary, for low [IPTG], the population shifts

oward higher expression levels as [IPTG] increases,

ndicating that the balance between the lac and lambda
epressor concentrations shifts to allow slightly higher
xpression levels of GFP. This behavior is more visible
n the case of pTAK117 (Fig. 5a) where the single-cell
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uorescence threshold for induction is approximately
5 times higher than in the case of pGFPaav. Due to the
ow GFP level at low [IPTG] in pGFPaav, the fluores-
ence level for some subthreshold cells falls below the
uantitative sensitivity of the flow cytometer, and some
re below the four decade range of the cytometer, mak-
ng it difficult to compare number density functions at
ow expression levels for the two systems. However,
ince the half-life of the reporter expressed by pGF-
aav is much closer to that of the lambda repressor,

he sharper separation between the two subpopulations
orming the bimodal distributions in the case of pGF-
aav and the significantly larger separation between the
ean low and high fluorescence values of unimodal

istributions is believed to be a more accurate repre-
entation of network behavior.

A more complete view of gene switching dynamics
an be obtained through transient studies. Figs. 6 and 7
how the time evolution of the green fluorescent num-
er density function for both pTAK117 and pGFPaav
nd for [IPTG] = 40 and 60 �M, respectively. In both
ases, the initial number density function (t = 300 min)
s unimodal. In the first case (Fig. 6), for both reporter
roteins, a second subpopulation grows out of the main
opulation in the middle of the exponential growth
hase. Notice also that the subpopulation consisting
f cells at high induction levels becomes gradually
ore significant until the reference state is reached,
here the overall number density function obtains a

table bimodal shape. As also shown in Fig. 5, the
eparation between the low and high expressing peaks
n the bimodal number density function is more pro-
ounced in the case of the reduced half-life GFP both
ransiently and at the reference state. This qualitative
oute towards bimodality is representative of all inter-
ediate inducer concentrations where bimodal number

ensity functions are obtained at the reference state
[IPTG] = 30–50 �M).

However, bimodality can also be observed tran-
iently even in cases where the number density function
s unimodal at the reference state (see Fig. 7b). In
he case of the reduced half-life GFP, as the popula-
ion passes through the single-cell switching point, a
eparate subpopulation at high fluorescence is formed

nd continues to co-exist with the low fluorescence
ubpopulation, thus resulting in a bimodal number
ensity function. However, in contrast to the case
f [IPTG] = 40 �M (Fig. 6b) the percentage of cells
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ig. 6. Time evolution of the number density function at
IPTG] = 40 �M for (a) pTAK117 and (b) pGFPaav as determined
y flow cytometry as described in methods.

elow threshold continually decreases with time until
t completely vanishes. Thus, the number density func-
ion eventually becomes unimodal at the reference
tate due to the higher concentration of IPTG, which
nables even the low expressing cells to become fully
nduced after some period of time. Contrary to pGF-
aav, transient bimodality is not observed in the case
f pTAK117 at [IPTG] = 60 �M (Fig. 7a). The num-
er density function becomes distorted as it passes
hrough the single-cell switching point of 300 but it
ever becomes bimodal. This is attributed to the much
igher stability of the protein expressed by gfpmut3

ompared to that of the lambda repressor, which does
ot allow enough time for visualizing the transition of
ells from low to high lambda repressor expression lev-
ls that actually occurs at the single-cell level.

t
t
h
e

IPTG] = 60 �M for (a) pTAK117 and (b) pGFPaav as determined
y flow cytometry as described in methods.

To obtain an understanding of transient bimodal-
ty we note that there exists a threshold in intracellular
ontent due to the architecture of the genetic toggle net-
ork. As can be seen in Fig. 5 this threshold is around
00 for pTAK117 and 4 for pGFPaav in units of rel-
tive fluorescence as measured by the flow cytometer.
ells which cross this threshold become induced at a
uch higher rate than cells below this threshold. Due

o this difference in induction rates above and below
he single-cell threshold and the fact that the cell popu-
ation is heterogeneous, as cells cross this threshold

ransiently, two distinct subpopulations are formed,
hus, resulting in the observed bimodal shapes. For
igh enough extracellular IPTG concentrations how-
ver, bimodality is only transient since the high IPTG
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Table 1
Dimensionless parameter values used in simulations

Parameter Value

a1 156.25
a2 15.625
β 2.5
γ 1.0
K 2.9618 × 10−5

η 2.0015
ξ
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oncentration eventually allows all cells of the popula-
ion to cross the single-cell threshold.

. Mathematical modeling

In order to obtain a more in-depth understanding of
ome key features that were experimentally observed
e utilized the simple, deterministic single-cell model

hat was presented by Gardner et al. (2000). According
o this model, the expression dynamics of the lac and
ambda repressors are given by the following dimen-
ionless equations:

du

dt
= a1

1 + vβ
− u (1)

dv

dt
= a2

1 + (u/(1 + ([IPTG]/K))η)γ
− v (2)

here u and v are the dimensionless intracellular
mounts of the lac and lambda repressors, respectively;
1 and a2 the dimensionless effective synthesis rates of
he PLs1con and Ptrc-2 promoters, respectively; β the
ooperativity of repression of the PLs1con promoter;

the cooperativity of repression of the Ptrc-2 pro-
oter; K the dissociation constant of IPTG from the

ac repressor; η is the cooperativity of IPTG binding.
he E. coli chromosome of the strain used in the exper-

ments has a mutant lac repressor, which was assumed
o not interact with the inducer, IPTG, or with other
unctional repressors encoded on the plasmid to form
multimer, or with the operator sites on the plasmids.
ny effect from the extra lacO site in the chromosome
as assumed to be negligible because the plasmid is
aintained at about 30 copies per cell (Amann et al.,

988). For a more detailed description of the model
ee Gardner et al. (2000), while for its derivation and
nderlying assumptions see Edelstein-Keshet (1988).

We are also interested in predicting the dynamics
f GFP since this is the marker that is experimentally
easured. Since GFP is co-expressed with the lambda

epressor, its synthesis rate is assumed to be propor-

ional to that of the lambda repressor, with a proportion-
lity constant ξ. Moreover, let δ denotes the ratio of the
FP degradation rate over that of the lambda repressor.
hen, the dynamics of the dimensionless intracellular

[
p
r
i

1.0
1.0 (pGFPaav); 0.03 (pTAK117)

FP concentration is given by the equation:

dGFP

dt
= ξa2

1 + (u/(1 + ([IPTG]/K))η)γ
− δ GFP (3)

All parameters used in our simulations are the same
s the ones presented in Gardner et al. (2000) and are
lso given in Table 1 for completeness. For simplicity
e assumed ξ = 1. Moreover, since the more stable GFP
f pTAK117 has a half-life more than 24 h, while that
f pGFPaav is approximately the same as that of the
ambda repressor, we assumed δ = 0.03 when simulat-
ng cells with pTAK117 and δ = 1 when simulating cells
arrying pGFPaav. Using these parameter values we
imulated this simple model aiming at understanding
he fate of single cells for different inducer concentra-
ions. As the initial condition we used an uninduced
tate, since in all the experiments presented all cells
ere initially at low expression levels as well.
Fig. 8a shows transient simulation results for three

ifferent inducer concentrations. Notice that at low
IPTG] (e.g. [IPTG] = 20 �M), uninduced cells remain
t low expression levels until steady state is reached
ince the available IPTG molecules are not enough
o relieve the strong inhibition that the lac repressor

olecules exert on the Ptrc-2 promoter. On the con-
rary, for high [IPTG] (e.g. [IPTG] = 100 �M), even
ells which start from very low expression levels
uickly reach the induced steady state. The high con-
entration of IPTG in this case rapidly decreases the
umber of free lacI molecules and shifts the intracel-
ular state in favor of the lambda repressors in a very
apid fashion. However, for intermediate [IPTG] (e.g.

IPTG] = 40 �M), there exists a much more even com-
etition between the number of free lac and lambda
epressor molecules. Thus, in order for a cell start-
ng with high lac and low lambda repressor concen-
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Fig. 8. Dynamics of the normalized GFP expression level using mod-
els (1–3) for: (a) different IPTG concentrations; [IPTG] = 20 �M
(dashed line), [IPTG] = 40 �M (solid line) and [IPTG] = 100 �M
(dotted line). In all simulations δ = 1, while all other parameter val-
ues are given in Table 1 and (b) different GFP half-lives. Solid line:
δ = 1 (pGFPaav). Dashed line: δ = 0.03 (pTAK117). In both simula-
t
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ions [IPTG] = 40 �M while all other parameter values are given in
able 1. Normalization was performed with the maximum possible
FP expression level (a2/δ).

rations to overcome the presence of many free lac
epressor molecules and eventually reach a state with
igh lambda repressor content, a significant amount of
ime is required, thus leading to the distinct sigmoidal

ynamics shown in Fig. 8a. These results are consis-
ent with the experimental finding that at intermediate
IPTG], more time is required in order for the system
o reach the reference state.

b
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ology 128 (2007) 362–375

These results also shed light into the effect that IPTG
oncentration has on the shape of the number den-
ity functions. Since uninduced cells at low [IPTG]
ells remain at low expression levels, while at high
IPTG], they very quickly become induced, it is logi-
al to expect the unimodal shape of the number density
unctions presented in Fig. 5. However, at intermediate
PTG concentrations there exists a very pronounced
ag phase that an uninduced cell is required to pass
efore switching to high expression levels. The dura-
ion of this lag phase is a function of the initial con-
ition; it decreases for higher initial expression levels.
hus, some of the cells present in the initial popula-

ion manage to overcome the hurdle and eventually
ecome induced, while other cells divide before hav-
ng the opportunity to pass the single-cell threshold and
ecome induced. Since, at each division event, cellu-
ar material partitions between two daughter cells, the
xpression levels of the two daughter cells are always
maller than those of the mother. Hence, we hypothe-
ize that the combined action of division and the delay
n surpassing the single-cell threshold shown in Fig. 8a,
auses some cells to become “trapped” to the unin-
uced state, while others have enough time to become
nduced, thus resulting in the observed bimodal shape
f the number density function at intermediate [IPTG].

Using this rationale, it is possible to obtain addi-
ional insight into the effect of GFP half-life on the
imodal shape of the number density functions pre-
ented in Fig. 5. Fig. 8b shows the single-cell dynamics
or an intermediate [IPTG] (40 �M) for the pTAK117
δ = 0.03) and pGFPaav (δ = 1) systems. Although
onger GFP half-life promotes faster protein build-up,
t also makes degradation the slowest step of the pro-
ess compared to transcription and translation. Hence,
n the case of the reduced GFP half-life, and once the
ingle-cell threshold is passed, the transition from low
o high expression levels is much faster than in the case
f the long half-life GFP. As a result, more cells will
xist for longer periods of time at intermediate expres-
ion levels (between the uninduced and induced states)
or the system with slower GFP degradation. This in
urn offers a possible explanation of the less sharp sep-
ration between the two subpopulations forming the

imodal number density function in the case of the
TAK117 system at intermediate IPTG concentrations.

Clearly, the model used for these simulations is fully
eterministic and does not take into account stochas-
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ic effects at the single-cell level (see e.g. Vilar et al.,
003). Moreover, it simulates only non-dividing single
ells and therefore cannot predict entire cell property
istributions such as cell population balance models
e.g. Mantzaris, 2006). In order to obtain a deeper quan-
itative understanding of the systems under consider-
tion more detailed modeling is required. However,
he hypotheses formed using this simple model, con-
titute a basis for further thinking that can contribute
owards elucidating the complex relationship between
ingle-cell genetic architecture and cell population het-
rogeneity.

. Summary and conclusions

The interplay between a specific, prototype genetic
rchitecture at the single-cell level and the distribution
f phenotypes at the cell population level was stud-
ed with the use of flow cytometry. The network under
nvestigation was the genetic toggle (Gardner et al.,
000) consisting of two promoter–repressor pairs. Two
reen fluorescent proteins of different half-lives were
laced after the lambda repressor as reporters in order
o study the effect of network structure on cell popula-
ion dynamics as well as assess the potential of using
n extracellular inducer (IPTG) to control the distri-
ution characteristics. Both reporter proteins exhibited
he same sigmoidal induction patterns for the average
xpression levels. However, experimental characteri-
ation with flow cytometry offered a more in-depth
iew of network behavior. Specifically, for very low
nd very high inducer concentrations, the distribution
f fluorescent phenotypes was found to be unimodal at
well-defined, quasi-time-invariant reference state. On

he contrary, at intermediate [IPTG], where the average
uorescence switches from low to high expression lev-
ls, the distributions become bimodal consisting of two
ubpopulations below and above a specific single-cell
hreshold. The region of inducer concentrations where
imodality was observed at the reference state was the
ame for both reporter proteins. Moreover, bimodality
as not only observed at the reference state. Even at

nducer concentrations where the distribution eventu-

lly becomes unimodal, transient studies revealed that
s the cell population passes through the single-cell
nduction threshold, two subpopulations are formed for
ome period of time. Thus, the existence of a single-

0
g
G
g

ology 128 (2007) 362–375 373

ell threshold and the bimodal shape of the fluorescence
istribution is a robust pattern of this particular genetic
etwork.

The single-cell induction threshold of fluorescence
as found to be significantly lower in the case of the

educed half-life GFP protein. Thus, the corresponding
imodal distributions were visibly more asymmetrical
or the system with the higher GFP degradation rate.

oreover, unlike the case of the reduced half-life GFP,
t was not possible to visualize the bimodal transition
f the population from low to high expression levels
or high inducer concentrations using the more stable
FP. Since the half-life of the lambda repressor is much

loser to that of the less stable GFP, the results obtained
ith the gfpaav gene downstream the lambda repres-

or at the reference state, as well as transiently, offer
more accurate representation of the genetic toggle

ehavior. However, the results obtained with the long
alf-life GFP are also valuable in understanding how
he expression levels will be distributed amongst the
ells of the population when a high-stability protein
s placed under the control of the genetic toggle net-
ork downstream of the lambda repressor. Finally, a

imple single-cell model was used to shed light into
he effect of inducer concentration and GFP half-life
n the shape of the experimentally measured number
ensity functions.

The wide spread of fluorescent phenotypes from one
o three orders of magnitude depending on the inducer
oncentration and the inability of the average popula-
ion properties to fully characterize network behavior
ndicate the importance of taking into account cell
opulation heterogeneity when designing such a gene-
witching network for biotechnological applications.
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