

Welcome to use our software-Brick Worker. This brilliant tool can help you with analyzing and optimizing biobrick sequences.

Want a try? Click on one of the function keys and start to analyze biobricks!

XMU-Software

Brick Worker

Promoter Decoder

RBS-Decorder

Synoproteiner

Terminator-Decorder

HELP

ABOUT US

In Pro-Decoder, you can analyze the promoter sequence and predict promoter strength.

Pro-Decoder

Please input your sequence

Threshold

high median low

Calculate

SBOL

Primer Design

Sigma factors

site

space

strength

Other transcription factors

TF

Site

Motif

Input your promoter sequence, choose a threshold for finding possible TF and click on 'Calculate' to run the program.

Pro-Decoder

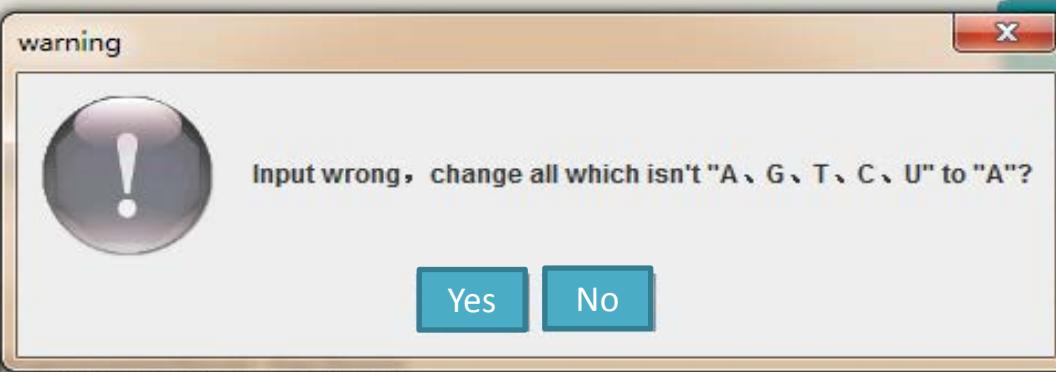
Please input your sequence

agataggadgatagaacgatagadfadacddata

Calculate

Threshold

high


median

low

0.1

SBOL

- Sigma site
- Other transcription factors

TF

Site

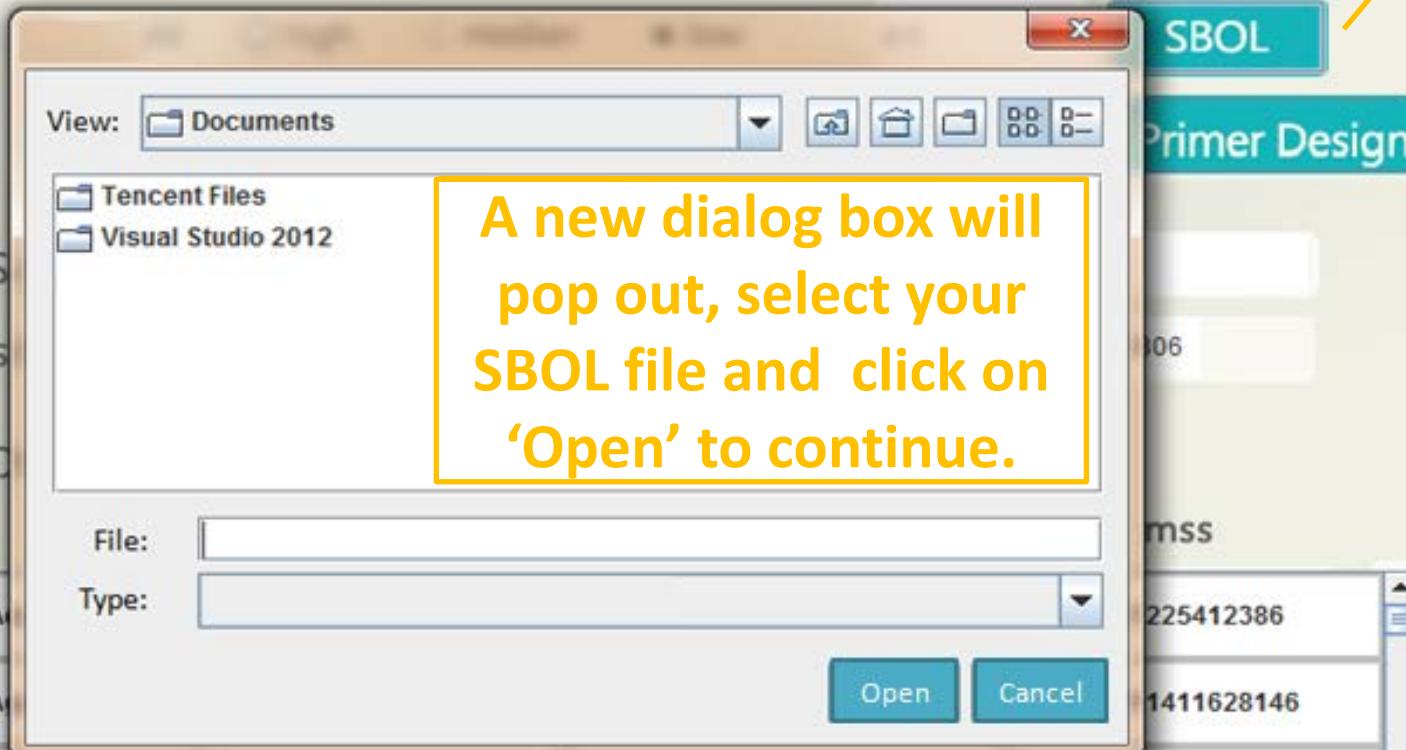
Motif

mss

If you input a wrong sequence, a dialog box for warning will occur. Click on 'YES' to input the right sequence.

Pro-Decoder

Please input your sequence


agatagcgatagacgatagacgataga

Click on 'SBOL' if you want to upload the sequence in SBOL file.

Calculate

SBOL

Primer Design

A new dialog box will pop out, select your SBOL file and click on 'Open' to continue.

This part of output give you information about sigma factor type, the location of sigma factor binding site, the spacer length and the predicted relative strength.

This part of output is about the possible TFBS in the promoter, the TF type, the location, sequence and similarity score of TFBS.

Pro-Decoder

Please input your sequence

agatagcgatagacgatagacgataga

Calculate

Threshold high median low

0.1

SBOL

Primer Design

Sigma factors sigma38

site 10

space -14

strength 1.22987597770806

Other transcription factors

TF	Site	Motif	mss
Ada	5	AGCGATAGACGAT	0.5573897225412386
AgaR	3	ATAGCGATAGACGATAGAC	0.33556811411628146
AraC	4	TAGCGATAGACGATAGACG	0.4902681786614279
ArcA	8	GATAGACGATAGACG	0.548730710741726
ArgP	3	ATAGCGATAGACGATAGA	0.5737950792371707

Pro-Decoder

Please input your sequence

agatagcgatagacgatagacgataga

Calculate

Threshold

high

median

low

0.1

SBOL

Primer Design

If you want to design primers for this promoter sequence, click on the 'Primer Design' button.

1.22987597770806

mss

Ada	5	AGCGATAGACGAT	0.5573897225412386
AgaR	3	ATAGCGATAGACGATAGAC	0.33556811411628146
AraC	4	TAGCGATAGACGATAGACG	0.4902681786614279
ArcA	8	GATAGACGATAGACG	0.548730710741726
ArgP	3	ATAGCGATAGACGATAGA	0.5737950792371707

A list of optimal primers designed automatically will pop out.

Pro-Decoder

Optional Primers

	Position	Length	Sequence
--	----------	--------	----------

○	Forward 3	23	TATCGCTATCTGCTATCTGCTAT
○	Reverse 8	19	GATAGACGATAGACGGATAG
○	Forward 6	20	CGCTATCTGCTATCTGCTAT
○	Reverse 8	19	GATAGACGATAGACGGATAG
●	Forward 1	20	TCTATCGCTATCTGCTATCT
●	Reverse 2	18	GATAGCGATAGACGGATAG
○	Forward 7	19	GCTATCTGCTATCTGCTAT
○	Reverse 8	19	GATAGACGATAGACGGATAG
○	Forward 8	19	CTATCTGCTATCTGCTATC
○	Reverse 3	18	ATAGCGATAGACGGATAGA

If you want your PCR products to include a certain TFBS, choose a primer pair and click on 'Add TFBS'.

Add TFBS

Pro-Decoder

A list of all the TFBS will occur.

Select one:

ID	TF	TFBS
ECK120012595	Ada	AAGCAAAGAGCAA
ECK120012515	AgaR	CTATATACTATATATAA...
ECK120012316	AraC	TAATAGGACTAATACTAT...
ECK120011345	ArcA	AACATAATATAATATAAAC
ECK120011202	ArgP	CTATAATATAGTACACTA...
ECK120011670	ArgR	TAAAATAGAATATATATAT...
ECK120026318	AscG	TACTAGTAGAAACAAG
ECK120013010	AsnC	TATATATATAAATAGAATA
ECK120015687	BaeR	TATACTACCATAAATATA...
ECK120013805	CaiF	AACAATAATATAGAAAATA
ECK120011210	CpxR	GTAAAAATAATAGTAAAA

Select a TFBS and click on 'OK' to add the TFBS to the PCR product.

OK

XMU-Software

The primer pair which can add the TFBS in your PCR product is designed successfully!

Forward

Pro-Decoder

Best Primer

TATCTGCTATCGCTATCTGCTATCTATAATATAGTACACTATAATAAAC

GCcontent 0.39

Tm 127.22

Reverse

GATAGACGATAGACGATAGGATATTATATCATGTGATATTATTG

GCcontent 0.42

Tm 136.14

RBS-Decoder

RBS-Decoder is designed to locate the SD sequence, start codon in RBS sequence as well as predict RBS strength.

agataagatagcgataga

Input the RBS sequence here.

ATG

SD Sequence

Site

Start Codon

Strength

Select one of the start codon or choose 'none' or 'unknown', and click on 'Cal' to start the analysis.

RBS-Decoder

AGATAGACGATAGACGATAGACGATAGAATG

ATG

SBOL File

Cal

The SD sequence,
location and the start
codon will be displayed.

SD Sequence	Site	Start Codon	Strength
TAGACG	18	ATG	0.9290980766079954

Here is the relative
strength of the RBS
sequence.

Synoproteiner

In this part we provide two methods to optimize the sequence.

Method: Method1(Fitness, recommended)

Host cell: E. coli

Input Sequence:

Values(GA)

GO

Output Sequence

SBOL File

Synoproteiner

Method	<input type="checkbox"/> Method1(Fitness, recommended)
Host cell	<input checked="" type="checkbox"/> Method1(Fitness, recommended)
	<input type="checkbox"/> Method2(MOCO, not recommended)
Input Sequence	<input type="text"/>
	<input type="button" value="Values(GA)"/>
	<input type="button" value="GO"/>

Choose one algorithm for the optimization.

Output Sequence

SBOL File

Synoproteiner

Method Method1(Fitness, recommended)

Host cell E. coli

Input Sequence

E. coli
P. pastoris
L. lactis
S. cerevisiae

Values(GA)

GO

Choose the host cell.

Output Sequence

SBOL File

Synoproteiner

Method

Method1(Fitness, recommended)

Host cell

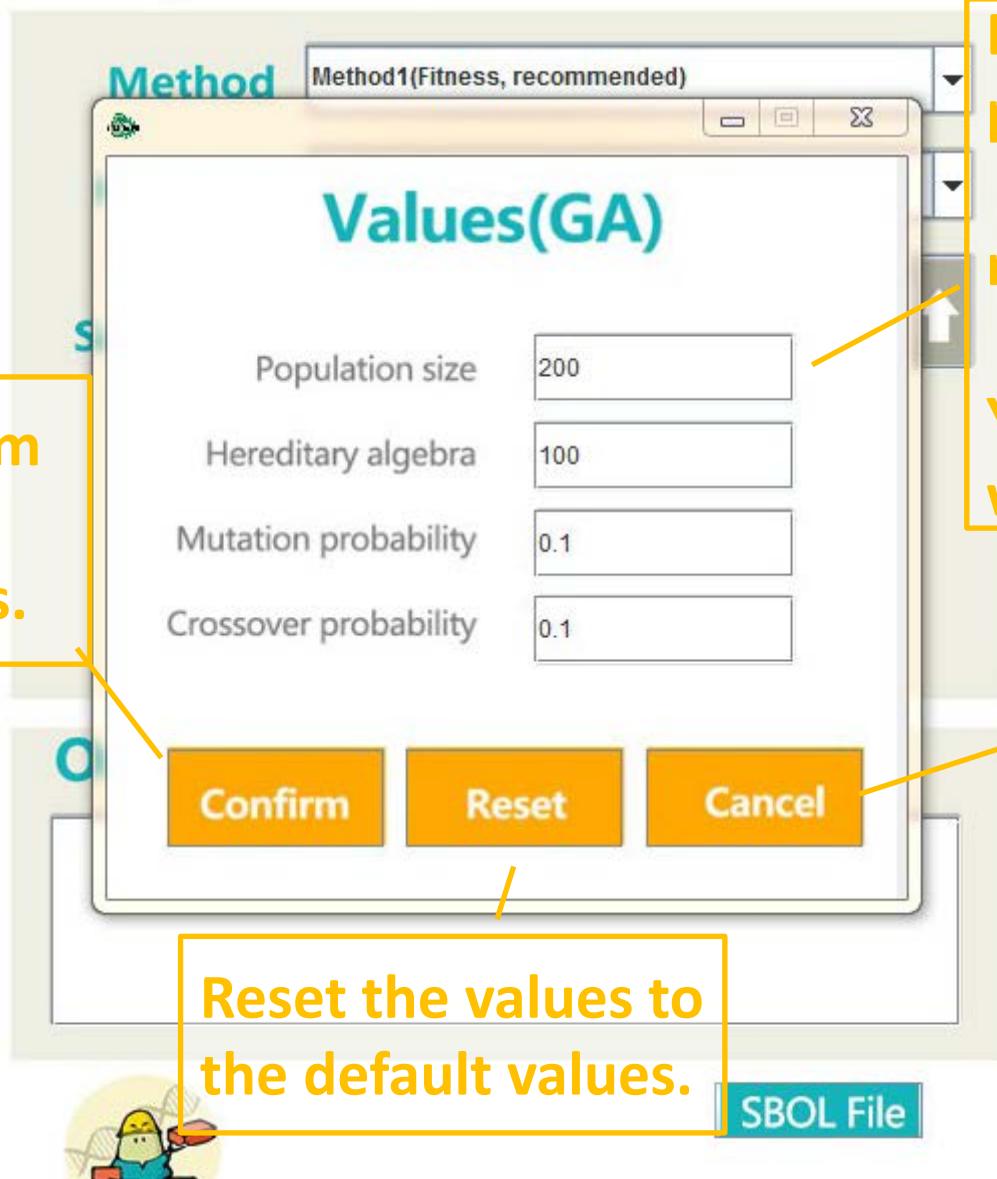
E. coli

Input Sequence

Values(GA)

GO

Output Sequence



SBOL File

Input an original sequence. Or upload an SBOL file.

Users can click the 'Values(GA)' button to input values of the parameter needed in genetic algorithm.

Synoproteiner

Confirm the values.

Default value:
population size—200,
hereditary algebra—100,
mutation probability—0.1,
crossover probability—0.1
You can input what you want.

Reset the values to the default values.

Cancel the dialog box. And the default values will be applied.

Synoproteiner

Method Method1(Fitness, recommended)

Host cell E. coli

Input Sequence

Values(GA)

GO

Output Sequence

This is a place for output of the sequence optimized.

When all above has been done, click 'GO' button to run the calculation.

SBOL File

Synoproteiner

Method

Method1(Fitness, recommended)

Output Sequence

```
CGATAGACAATCGATGTATGACGCTAAACAATCGAGATCGAC
```

Click on 'YES' to
analyze the sequence
and predict the
folding rate.

Do you want to analyze?

YES

NO

SBOL File

Prediction of the folding rate

2865.01

Analysis of the sequences

Codons	NBO	PBO	NAO	PAO
AAA	0	0.0	0	0.0
AAC	0	0.0	0	0.0
AAG	0	0.0	0	0.0
AAT	0	0.0	0	0.0
ACA	0	0.0	1	0.07142857142857142
ACC	0	0.0	0	0.0
ACG	2	0.14285714285714285	0	0.0
ACT	0	0.0	1	0.07142857142857142
AGA	3	0.21428571428571427	1	0.07142857142857142
AGC	0	0.0	0	0.0
AGG	0	0.0	0	0.0
AGT	0	0.0	0	0.0
ATA	2	0.14285714285714285	0	0.0
ATC	0	0.0	2	0.14285714285714285
ATG	0	0.0	0	0.0
ATT	0	0.0	0	0.0
CAA	0	0.0	0	0.0

This is the result of the prediction and the analysis.

Synoproteiner

Method Method1(Fitness, recommended)

Host cell E. coli

Input Sequence

Values(GA)

GO

Output Sequence

This is a place for output of the sequence optimized.

Click on 'SBOL File' if you want to save the results.

SBOL File

Synoproteiner

Method Method1(Fitness, recommended)

Host cell E. coli

Input Sequence AGATAGACGATAGACGTATAGCGATAGACGATAGAGAT
AGAC

Prompter

D:\Users\lenovo\workspace\MyDnaComponent.xml is outputed

OK

GO

The SBOL file
has been saved.

Output Sequence

CGATAGACAATCGATGTATGACGCTAACAAATCGAGATCGAC

SBOL File

Transcription Terminator Efficiency Calculator

TTEC

[Directly Input Your Sequence.](#)

SBOL

[Analyse Your SBOL-File.](#)

**TTEC is a software
designed by
SUSTC-Shenzhen-B
to calculate the
terminator efficiency.**

[Click here to view the Database:](#)

[Database](#)

[Help](#)

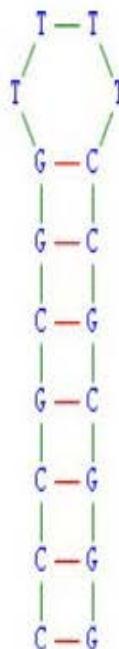
[About us](#)

Online-Tool: www.terminatorefficiency.com

Transcription Terminator Efficiency Calculator

Please Input Your Sequence:

Example


TTEC RUN

The Direction: Forward Reverse

Efficiency:

Structure:

100%

Help

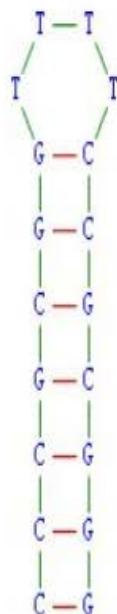
The Image of your Sequence is saved in 'C:\rnaiImages'.

Transcription Terminator Efficiency Calculator

Please Input Your Sequence:

Example

TTEC RUN


The Direction: Forward Reverse

Efficiency:

Structure:

100%

TTEC will show the efficiency and the secondary structure of the terminator.

Help

The Image of your Sequence is saved in 'C:\rnalImages'.

In next version,
YOU CAN.....

Pro-Decoder

Please input your sequence

Threshold high median low

species

Sigma factors

site

space

strength

Other transcription factors

TF

Site

Motif

mss

XMU-Software

In the next version, we'll allow users to select the species of the promoter sequences such as *B. subtilis* and *C. trachomatis* besides *E. coli*.

RBS-Decoder

agataagatagcgataga

ATG

SBOL File

Cal

species

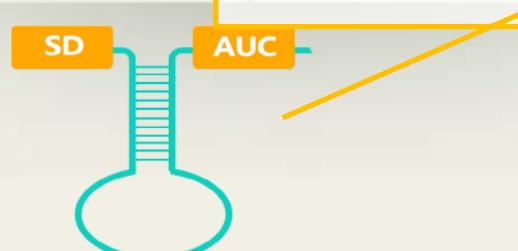
SD Sequence	Site	Start Codon	Strength
-------------	------	-------------	----------

RBS-Decoder will also integrate
the RBS model of more species
such as *H. influenzae* and
M. genitalium

RBS-Decoder

AGATAGACCGATAGACGATAGACGATAGAATG

ATG


SBOL File

Cal

SD Sequence	Site	Start Codon	Strength
TAGACG	18	ATG	0.9290980766079954

We'll provide a sketch of
the secondary structure
of the RBS sequence.

Structure:

Synoproteiner

Method

Host cell

3D-Dynamics
Simulation

You can have a broad coverage of the existed host cells such as *Pichia*, *Staphylococcus aureus*, *Aspergillus*, *Penicillium*, *Saccharomyces*, etc.

Values(GA)

Accurate Prediction

GO

Synoproteiner

Method

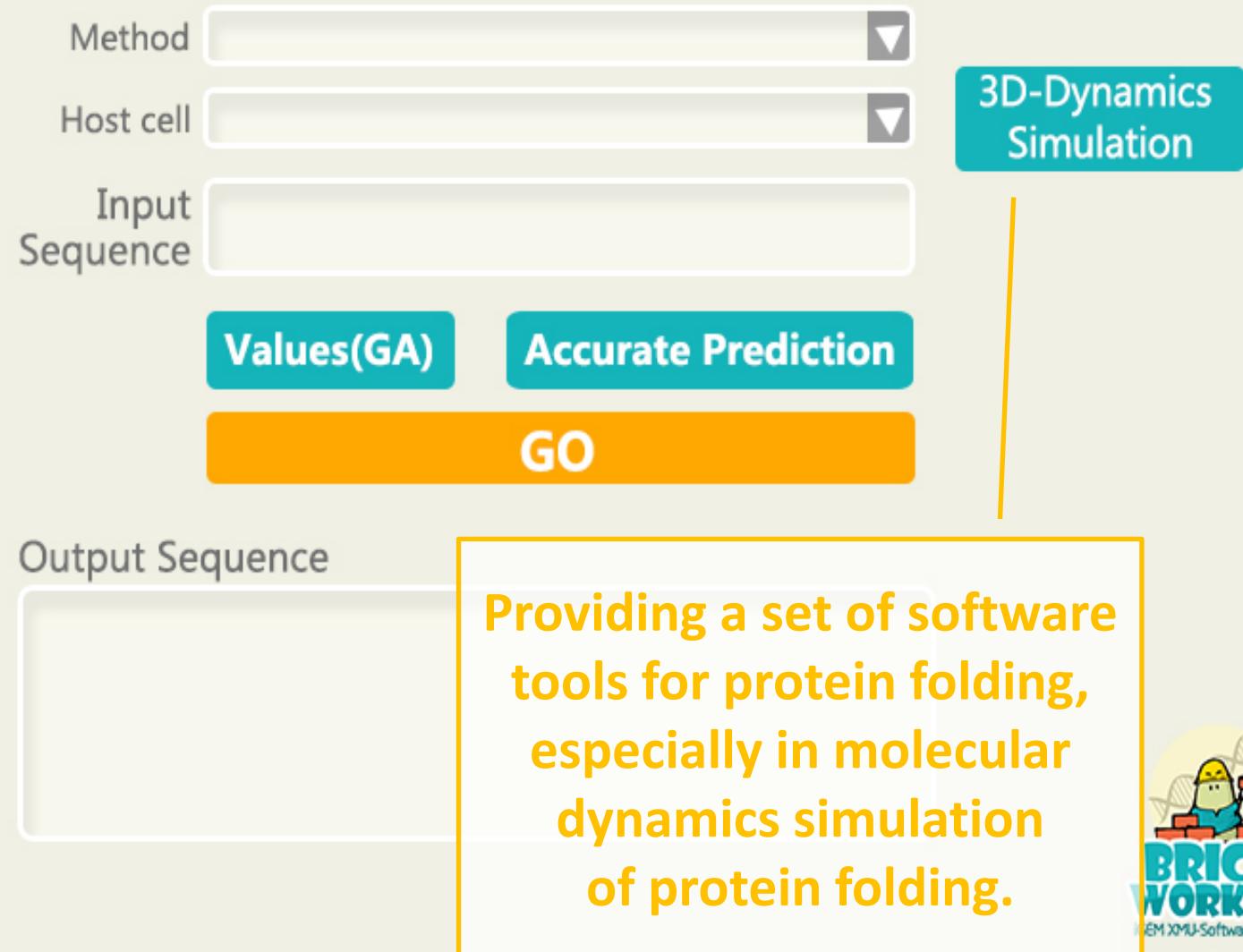
Host cell

Input Sequence

Values(GA) **Accurate Prediction**

GO

Output Sequence


Considering more factors such as spiral structure in folding which influence the folding rate and thereby obtaining more accurate prediction rate.

3D-Dynamics Simulation

BRICK WORKER
iGEM XMU-Software 2013

Synoproteiner

Synoproteiner

Spiral structure

- alpha-spiral
- beta-spiral
- Do not know

Confirm

Cancel

These spiral structure will help you predict the rate more accurately.

Synoproteiner

3D-Dynamics Simulation

The 3D-structure of proteins can help users find the active center and simulate the reaction between the protein and the substrate to find an optimal configuration. And the users can obtain more optimized protein by figuring out the new gene sequence reversely (with structure information, not the amino acid sequence).