

The Potential of Epigenetic Therapy and the Need for Elucidation of Risks

Josh Tycko, Danielle Fields, Daniel Cabrera, Mahamad Charawi, Bradley Kaptur[†]

Epigenetic phenomena are known to be a root cause of many common diseases. To date, the FDA has approved four epigenetic therapies that show promising results for prolonging lives of terminal cancer patients. However, there is a relative lack of knowledge about long-term epigenetic effects, especially those that affect future generations. We propose a heightening of standards for epigenetic therapy: therapies should be targeted to specific genes in specific cells and cannot affect the germline and patients' epigenomes should be sequenced before and after treatment. Moreover, further research should be performed to answer questions about transgenerational epigenetic effects, to analyze the effects of altered epigenomes in the long term, and to develop superior assays for screening epigenomes. We highlight current research in the field, including the work of the Penn iGEM group.

Epigenetics Background

Introduction. The code of life is more than a sequence of As, Cs, Ts, and Gs. Muscle cells in the human heart contain the same DNA as skin cells in the foot, yet these two cell types behave in radically different ways. Both contain the DNA for over 20,000 human genes but express only the ones needed for their own form and function. These differences in gene expression are modulated by epigenetic controls. Epigenetics refers to any heritable chemical modification of DNA that alters expression without changing genetic sequence. Neurodevelopmental disorders, immunodeficiency, cancer, and other illnesses can result when these mechanisms go awry.

Methylation. In humans, enzymes called methyltransferases add methyl groups to short DNA sequences abundant in the genome called CpG sites. Methyl groups block transcription factors (gene activators) from binding to DNA and performing their normal function. Although epigenetic factors do not change the sequence of DNA, they can affect the phenotype, the observable characteristics of the organism. Specific patterns of methylation are necessary for a cell to modulate the level of expression of each of its genes.

Epigenetic Diseases

Cancer. DNA methylation has been referred to as the "hallmark of cancer" (Szyf 2004). Abnormal methylation patterns throughout the genome that cause blockage of tumor suppressor genes have been linked to many types of cancer. For instance, breast cancer generally exhibits inactivation of the gene BRCA1. In sporadic (i.e. non-familial) cases, this suppression is usually caused by hypermethylation rather than mutation of the gene (Rice 2000). In other cases, hypomethylation causes

overexpression of the flap endonuclease 1 gene and lead to breast cancer in some patients (Singh 2008).

Neurological. Methylation abnormalities have been linked to a wide range of diseases. Fragile X syndrome, one of the leading genetic causes of intellectual disability, is characterized by hypermethylation, which disrupts the production of protein necessary for normal brain development. Patients suffering from this disorder are at risk for autism, ADHD, decreased IQ, infertility in females, and distorted facial features (Jacquemont 2011).

Psychological. Epigenetic mechanisms can also impact psychological states. In an animal study, rat pups that received better maternal care in the form of licking, grooming, and arched-back nursing had lower levels of methylation at the glucocorticoid receptor gene. These rats displayed less intense responses to stressful situations than those who received poor maternal care. The researchers were able to eliminate these differences via epigenetic interference (Weaver 2004).

Epigenetic Therapy

Fundamental Advantages. The aforementioned epigenetic roots of disease are attractive targets for therapy. Aberrant DNA methylation patterns are more easily reversible than genetic mutations. In the case of cancer, epigenetic therapy coaxes tumor cells to return to a healthy state, rewiring their methylation patterns so the cells express genes that halt their cancerous uncontrolled growth. Traditional chemotherapy strategies, on the other hand, aim to kill cancer cells and are fundamentally more toxic to patients since healthy cells are also harmed.

Recent Successes. There have been some exciting clinical successes with the first generation of epigenetic

[†] UNIVERSITY OF PENNSYLVANIA

therapies. To date, four epigenetics treatments have been approved by the FDA for use in cancer patients: Zolinza, Istodax, Vidaza, and Dacogen (Claus 2005).

The first two are histone deacetylase inhibitors and prevent histone modifications, one type of epigenetic change; the second two inhibit DNA methylation. These compounds are chemical analogues of the DNA base cytosine ("C"), and at low doses, they bind to the methyltransferases so that they don't come into contact with the patient's actual DNA, preventing the DNA's methylation. At high doses, they can incorporate into the DNA or RNA itself and reduce cell viability. These treatments are used, at low doses, to reverse hypermethylation in patients with myelodysplastic syndromes (MDS), a spectrum of blood cell disorders that can lead to anemia and heightened susceptibility to infections. The drugs effectively reverse cancerous hypermethylation and return standard function to cell-cycle genes, restoring normal growth rates. However, fewer than 10 percent of patients experience a "complete response," a total reversal from diseased to healthy bone marrow and blood (Silverman 2002).

Problems. The results of first generation epigenetic therapies are promising, but these drugs should not be seen as the ideal model for future developing therapies, especially if doctors want to treat younger patients with non-lethal epigenetic diseases. First generation drugs fail to satisfactorily address many issues. First, these compounds inhibit epigenetic methylation processes generally and may cause cancers which themselves develop in part by low methylation levels and require additional therapies to counteract the effect (Feinberg 2004).

Second, the current drugs work by blindly affecting all genes in the genome of all the cells they encounter. One of the scientists behind the Dacogen studies noted there is a "potential for harm," but so far the adverse events, including red blood cell suppression, diarrhea, anorexia, and others, have been deemed acceptable by the FDA (Issa 2007). It is possible that the potential for greater harm will be realized if epigenetic therapies are used on patients with a much longer expected life span than the current patient population.

Ethical Questions

Long Term Risk. Research has not yet fully elucidated the effects of DNA methylation (Rothstein 2009). Therapies may have off-target effects that are difficult to observe especially if they appear years after the initial therapy. To date, approved trials have been conducted with very sick, elderly cancer patients, and research has confirmed epigenetic modifications can affect us on a longer, even transgenerational, time-scale (Rothstein 2009). Clinical trials however do not normally track side-effects ten, twenty, or thirty years after treatment. If these treatments alleviate disease in the short term but eventually cause unforeseeable epigenetic abnormalities, are they acceptable for younger patients with non-terminal disease? Most would argue this depends on the gravity of the adverse effects—a risk/benefit

analysis similar to that performed for any drug approval. Therefore, clinical trials must be designed to take these risks into account. Trials and follow-ups should last for a sufficient amount of time to assess these risks—on the decade time scale. If the drug does show an immediate benefit in the trial subjects, the fairness of keeping it off the shelf until the conclusion of the trial must be assessed. Certainly, trials of such durations with these looming questions would be unfavorable for the pharmaceutical investment community. Comprehensive diagnostic tests could help balance the need to push new drugs and ensure safe use. Methylation-sensitive genome sequencing in multiple cell types for each patient would reveal potential off-target effects. This kind of personalized medicine could obviate the need of a longitudinal clinical trial. This is difficult and expensive with existing technologies, and these procedural problems must be overcome so that adequate assessment of epigenetic therapies can be performed (Laird 2010). As more research is conducted, the balance between clinical trials and personal diagnostic tests and the responsibilities of those involved must be considered.

Trans-generational Risk. The issues discussed thus far are not unique to first generation epigenetic therapies. They act blindly not only on a genomic level, but also in terms of affected cell type. We cannot exclude the possibility that these treatments will affect the epigenomes of germline cells. In fact, recent studies demonstrate that Dacogen could interfere with embryo implantation and harm the fetus if given to a pregnant woman or to a man or woman planning on having children (Ding 2012). There is evidence that epigenetic modifications can be inherited by children and even grandchildren, so doctors need to keep the health of future generations in mind (Grossniklaus 2013). The effect of epigenetic therapies on germline cells should be measured not only while the drug is being administered, but also in follow-ups after the treatment is finished. It is critical that more basic research is performed to determine the extent of transgenerational epigenetic effects. If we acknowledge that some patients will have children regardless of any warnings, we must consider if it is acceptable to have synthetically altered epigenomes in the population.

Second Generation Epigenetic Therapies

Higher Standards. Continued development of first generation epigenetic therapies that affect whole genomes and any cell type should be accompanied with open acknowledgement of potential undetectable harm. To date, epigenetic therapy has been held to the same safety standards of other cancer therapies. However, as these drugs affect gene expression, the basis of our existence, it is more appropriate to hold them to the standards of gene therapies. That entails an expectation to target only the genes, pathways, and cells relevant to the disease (U.S. Food and Drug Administration). Germline transmission of epigenetic modifications should be unacceptable. Animal model studies are always carried out before therapies are

The Potential of Epigenetic Therapy and the Need for Elucidation of Risks

References

Campion, J., Milagro, F., & Martinez, J. A. (2010). Epigenetics and obesity. *Prog Mol Biol Transl Sci*, 94, 291-347.

Claus, R., Almstedt, M., & Lubbert, M. (2005). Epigenetic treatment of hematopoietic malignancies: in vivo targets of demethylating agents. *Semin Oncol*, 32(5), 511-520.

Ding, Y. B., Long, C. L., Liu, X. Q., Chen, X. M., Guo, L. R., Xia, Y. Y., et al. (2012). 5-aza-2'-deoxycytidine leads to reduced embryo implantation and reduced expression of DNA methyltransferases and essential endometrial genes. *PLoS One*, 7(9), e45364.

Feinberg, A. P., & Tycko, B. (2004). The history of cancer epigenetics. *Nat Rev Cancer*, 4(2), 143-153.

Grossniklaus, U., Kelly, B., Ferguson-Smith, A. C., Pembrey, M., & Lindquist, S. (2013). Transgenerational epigenetic inheritance: how important is it? *Nat Rev Genet*, 14(3), 228-235.

Issa, Jean-Pierre. Interview by Nova. Nova. Public Broadcasting System. October 16, 2007.

Jacquemont, S., Curie, A., des Portes, V., Torrioli, M. G., Berry-Kravis, E., Hagerman, R. J., et al. (2011). Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. *Sci Transl Med*, 3(64), 64ra61.

Kerkel, K., Schupf, N., Hatta, K., Pang, D., Salas, M., Kratz, A., et al. (2010). Altered DNA methylation in leukocytes with trisomy 21. *PLoS Genet*, 6(11), e1001212.

Kondo, T., Bobek, M. P., Kuick, R., Lamb, B., Zhu, X., Narayan, A., et al. (2000). Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. *Hum Mol Genet*, 9(4), 597-604.

Konermann, S., Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F. (2013). Optical control of mammalian endogenous transcription and epigenetic states. *Nature*, 500(7436), 472-6.

Laird, P. W. (2010). Principles and challenges of genome-wide DNA methylation analysis. *Nat Rev Genet*, 11(3), 191-203.

Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Bernstein BE, Costelloe JF, Wilkinson MF, Joung JK. (2013). Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. *Nat Biotechnol*. E-pub ahead of print.

Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, Bernstein BE. (2013). Locus-specific editing of histone modifications at endogenous enhancers. *Nat Biotechnol*. E-pub ahead of print.

Rice, J. C., Ozcelik, H., Maxeiner, P., Andrusis, I., & Futscher, B. W. (2000). Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. *Carcinogenesis*, 21(9), 1761-1765.

Rothstein, M. A., Cai, Y., & Marchant, G. E. (2009). The ghost in our genes: legal and ethical implications of epigenetics. *Health Matrix*, 19(1), 1-62.

Silverman, L. R., Demakos, E. P., Peterson, B. L., Kornblith, A. B., Holland, J. C., Odchimir-Reissig, R., et al. (2002). Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. *J Clin Oncol*, 20(10), 2429-2440.

Singh, P., Yang, M., Dai, H., Yu, D., Huang, Q., Tan, W., et al. (2008). Overexpression and hypomethylation of flap endonuclease 1 gene in breast and other cancers. *Mol Cancer Res*, 6(11), 1710-1717.

Szyf, M., Pakneshan, P., & Rabbani, S. A. (2004). DNA methylation and breast cancer. *Biochem Pharmacol*, 68(6), 1187-1197.

U.S. Food and Drug Administration. "Cellular and Gene Therapy Guidance." Last modified July 2, 2013. <http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/default.htm>.

Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. *Nat Neurosci*, 7(8), 847-854.

Acknowledgments

Penn iGEM is an undergraduate research team that only exists because of the generous support of many individuals and companies (see <http://2013.igem.org/Team:Penn>). Dr. Brian Chow of Penn Bioengineering advises and directs the team. Spencer Glantz, Mike Magarici, Avin Veerakumar, and Dr. Orkan Telhan have also provided invaluable expertise. Drs. Brian Chow, Benjamin Tycko, and Marisa Bartolomei reviewed and provided comments on this manuscript.

NEW YORK UNIVERSITY
GRADUATE SCHOOL OF ARTS & SCIENCE

Bioethics

Life, Health, and Environment

M.A. IN BIOETHICS

The NYU master's program promotes a broad conception of Bioethics encompassing both medical and environmental ethics through conferences, workshops, public lectures, and graduate courses. Students may choose to follow a health track or an environment track, and in both cases they will receive training in broader bioethical theories and application.

Rolling admissions. Apply now!

For further information, please see our website:

www.bioethics.as.nyu.edu/page/discover

New York University is an affirmative action/equal opportunity institution.

NEW YORK UNIVERSITY