Mutagenesis

Mutagenesis PCR I (Multiple Site Directed Mutagenesis)

Mixture

- 25µl total reaction volume :
- 1. 2.5 μl of 10X Taq lligase buffer (need the NAD for Taq ligase)
- 2. 0.5 µl 100mM ATP
- 3. X µl (50-100 ng) of dsDNA template
- 4. X μl of each oligonucleotide primer (check primer concentration with Nanodrop)
 - a. For 1-3 primers, add 100 ng each primer. For 4-5 primers, add 50 ng each primer.
 - b. If primers are greater than 20% different in length, scale the amount of primer added so that primer is added in approximately equimolar amounts. See Stratagene QuikChange Multi Site-Directed Mutagenesis manual for details.
- 5. 3µl of dNTP mix (100mM total dNTP mix with 25 mM each individual dNTP)
- 6. ddH₂O to a final volume of 22 μl
 - Then add:
- 1. 1 μl of Phusion DNA polymerase
- 2. 1 μl of Taq Ligase
- 3. 1 µl of T4 PNK

Procedure

This procedure is primarily derived from the Stratagene QuikChange Multi Site-Directed Mutagenesis manual with some modifications based on past experience.

1. Design mutagenesis primers.

- The primer should be designed so that the desired mutation occurs at the exact center of the primer with 10-15bp of matching sequence on each side
- Primers should be 25-45bp in length with a melting temp of >=75°C.
 Stratagene recommends not using primers greater than 45bp in order to avoid formation of secondary structure. Primers should have comparable melting temperatures.
- See the Stratagene manual for more detailed information. In particular, adhere to their formula for calculating the melting temperature of your primers and design your primers to have a melting temperature >=75°C.
- Primers should have at least 40% GC content and terminate in one or more C or G bases at the 3' end.
- PAGE purification of primers may improve mutagenesis efficiency
- 2. Purify template plasmid from a dam⁺ E. coli strain via miniprep.
- 3. Set up mutagenesis PCR mix as described above.
- 4 Run Reaction
 - 1. 37°C for 30 min (T4 PNK step)
 - 2. 95°C for 3 min
 - 3. 95°C for 1 min
 - 4. 55°C for 1 min
 - 5. 65°C for 30 sec/kb of plasmid length minimum (is optimal temperature for Taq ligase)
 - 6. Run reaction for 30 cycles.
 - Stratagene recommends using a PCR machine with heated lid or overlaying the reaction with mineral oil.
- 5. Cool the reaction to <=37°C (set storage temperature at 37°C)
- 6. Add 1μl DpnI restriction enzyme to the PCR tube directly. (Purification is not necessary at this stage).
- 7. Incubate 1 hour at 37°C (as Stratagene manual recommends).
- 8. Transform purified DNA into highly competent cells.
- 9. Screen the transformants for the desired mutation using colony PCR, restriction digest or sequencing as appropriate.

Primers phosphorylation of 5' (optional)

1. Mix:

- 3μl 100μM sense oligo (final concentration 10μM)
- 3μl 100μM anti-sense oligo (final concentration 10μM)
- 3µl 10X T4 DNA ligase buffer
- 2µl T4 Polynucleotide kinase (PNK)
- 19μl double distilled water
 (Total volume 30 μL)
- 2. Incubate at 37°C for 1.5 hours.
- 3. Heat kill PNK by 10 minutes at 70 °C

Mutagenesis PCR II (Single Site Directed Mutagenesis)

This protocol in based in a routine Phusion® PCR by New England BioLabs These guidelines cover a site direct mutagenesis.

Note the difference in the steps and program than a routine PCR.

Reaction Setup: We recommend assembling all reaction components on ice and quickly transferring the reactions to a thermocycler preheated to the denaturation temperature (98°C). All components should be mixed and centrifuged prior to use. It is important to add Phusion DNA Polymerase last in order to prevent any primer degradation caused by the $3' \rightarrow 5'$ exonuclease activity.

Procedure

1. PCR recipe

Component	20 μl Reaction	50 μl Reaction	Final Concentration
Nuclease-free	to 20 μl	to 50 μl	

water			
5X Phusion HF or			
GC Buffer	4 μ1	10 μl	1X
10 mM dNTPs	0.4 μl	1 μ1	200 μΜ
10 μM Forward			
Primer	1 μ1	2.5 μl	0.5 μΜ
Template DNA	100-500ng	100-500ng	variable
DMSO (optional)	(0.6 µl)	(1.5 µl)	3%
Phusion DNA			
Polymerase	0.2 μl	0.5 μl	1.0 units/50 μl PCR

2. Transfer PCR tubes from ice to a PCR machine with the block preheated to 98°C and begin thermocycling

3. PCR Program

STEP	TEMP	TIME
Initial Denaturation	98°C	30 seconds
	98°C	5-10 seconds
16-20 Cycles*	55°C	10-30 seconds
	72°C	15-30 seconds per kb
Final Extension	72°C	5-10 minutes
Hold	37°C**	1-2 Hrs***

^{*}After complete the first half of the 8-10 cycles, stop the machine, let the reaction mix gradually cold, open the tube and add the following

** Set storage temperature at 37°C, another option is place the cooled tube inside a 37°C incubator.

4.

Component	20 μl Reaction	50 μl Reaction	Final
			Concentration
10 μM Reverse	1 μ1	2.5 μl	<0.5 μM
Primer			

- 5. After adding the primers, resume the remaining cycles.
- 6. Once that the program is complete with the two primers, in the holding step add 1 µl DpnI restriction enzyme to the PCR tube directly. Only digestiong the PCR products for no more that 2 hrs. (Purification is not necessary at this stage).
- 7. Transform purified DNA into highly competent cells.
- 8. Screen the transformants for the desired mutation using colony PCR, restriction digest or sequencing as appropriate.

Primers phosphorylation of 5' (optional)

- 1. Mix:
 - 3μl 100μM sense oligo (final concentration 10μM)
 - 3µl 100µM anti-sense oligo (final concentration 10µM)
- 3µl 10X T4 DNA ligase buffer
- 2µl T4 Polynucleotide kinase (PNK)
- 19μl double distilled water
 (Total volume 30 μl)
- 2. Incubate at 37°C for 1.5 hours.
- 3. Heat kill PNK by 10 minutes at 70°C.

Mutagenesis PCR III (Single Site Directed Mutagenesis)

This protocol in based in a routine Phusion_® PCR by New England BioLabs These guidelines cover a site direct mutagenesis.

Reaction Setup: We recommend assembling all reaction components on ice and quickly transferring the reactions to a thermocycler preheated to the denaturation temperature (98°C). All components should be mixed and centrifuged prior to use. It is important to add Phusion DNA Polymerase last in order to prevent any primer degradation caused by the $3' \rightarrow 5'$ exonuclease activity.

Procedure

1.

Component	20 μl Reaction	50 μl Reaction	Final Concentration
Nuclease-free water	to 20 μl	to 50 μl	
5X Phusion HF or GC Buffer	4 μΙ	10 μΙ	1X
10 mM dNTPs	0.4 μl	1 μ1	200 μΜ
10 μM Forward Primer	0.2μ1	0.5 μ1	0.25 μΜ
10 μM Reverse Primer	0.2μl	0.5 μ1	0.25 μΜ
Template DNA	100-500ng	100-500ng	variable
DMSO (optional)	(0.6 µl)	(1.5 µl)	3%
Phusion DNA Polymerase	0.2 μ1	0.5 μ1	1.0 units/50 μl PCR

2. Transfer PCR tubes from ice to a PCR machine with the block preheated to 98°C and begin thermocycling

3. PCR Program

STEP	TEMP	TIME
Initial Denaturation	98°C	30 seconds
	98°C	5-10 seconds
16-20 Cycles	55°C	10-30 seconds
	72°C	15-30 seconds per kb
Final Extension	72°C	5-10 minutes
Hold	37°C*	1-2 Hrs**

^{*}Set storage temperature at 37°C, another option is place the cooled tube inside a 37°C incubator.

- 4. Once that the program is complete with the two primers, in the holding step add 1 μl DpnI restriction enzyme to the PCR tube directly. Only digesting the PCR products for no more that 2 hrs. (Purification is not necessary at this stage).
- 5. Transform purified DNA into highly competent cells.
- 6. Screen the transformants for the desired mutation using colony PCR, restriction digest or sequencing as appropriate.

Primers phosphorylation of 5' (optional)

- 1. Mix:
- 3μl 100μM sense oligo (final concentration 10μM)
- 3μl 100μM anti-sense oligo (final concentration 10μM)
- 3µl 10X T4 DNA ligase buffer
- 2µl T4 Polynucleotide kinase (PNK)
- 19μl double distilled water (Total volume 30 μL)
- 2. Incubate at 37°C for 1.5Hrs
- 3. Heat kill PNK by 10 min at 70°C