Genomic DNA extracton from bacteria

- TE buffer
- 10% (w/v) sodium dodecyl sulfate (SDS)
- 20 mg/ml proteinase K
- phenol\chloroform (50:50) or chloroform:isoamil-alcohol (24:1)
 - 1. Grow E. coli culture overnight in rich broth.
 - 2. Transfer 2 ml to a 2-ml micro centrifuge tube and spin 2 min.
 - 3. Decant the supernatant.
 - 4. Drain well onto a Kimwipe.
 - 5. Resuspend the pellet in 467 µl TE buffer by repeated pipetting.
 - 6. Add 30 μ l of 10% SDS and 3 μ l of 20 mg/ml proteinase K, mix , and incubate 1 hr at 37 ° C
 - 7. Add an equal volume of phenol/chloroform and mix well but very gently to avoid shearing the DNA by inverting the tube until the phases are completely mixed.
 - 8. Carefully transfer the DNA/phenol mixture into a Phase Lock Gel[™] tube (green) and spin at 12,000 RPM for 10 min.
 - 9. Transfer the upper aqueous phase to a new tube and add an equal volume of phenol/chloroform.
 - 10. Again mix well and transfer to a new Phase Lock GelTM tube and spin 10 min.
 - 11. Transfer the upper aqueous phase to a new tube.

For the next steps use the buffers and columns from the MiniPrep kit (Qiagen)

- 12. To the aqueous phase add 4 volumes of buffer PB (binding buffer)
- 13. Apply the DNA onto the MiniPrep column. Centrifuge for 60sec at full speed.
- 14. Wash with 500µL buffer PB. Centrifuge for 60sec at full speed. Discard flow through.
- 15. Wash with 750µL buffer PE. Centrifuge for 60sec at full speed. Discard flow through.
- 16. Dry the column by centrifugation for additional 60 sec.
- 17. Elute DNA with $40\mu L$ DDW or Buffer TE.
- 18. Measure the DNA concentration and purity by measuring the absorbance.

TE buffer:

10 mM Tris-Cl (pH, usually 7.6 or 8.0) 1 mM EDTA (pH 8.0)