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Leucine-responsive regulatory protein (Lrp) is a glo-
bal regulatory protein that affects the expression of
multiple genes and operons in bacteria. Although the
physiological purpose of Lrp-mediated gene regulation
remains unclear, it has been suggested that it functions
to coordinate cellular metabolism with the nutritional
state of the environment. The results of gene expression
profiles between otherwise isogenic lrp� and lrp�

strains of Escherichia coli support this suggestion. The
newly discovered Lrp-regulated genes reported here are
involved either in small molecule or macromolecule syn-
thesis or degradation, or in small molecule transport
and environmental stress responses. Although many of
these regulatory effects are direct, others are indirect
consequences of Lrp-mediated changes in the expres-
sion levels of other global regulatory proteins. Because
computational methods to analyze and interpret high
dimensional DNA microarray data are still an early
stage, much of the emphasis of this work is directed
toward the development of methods to identify differen-
tially expressed genes with a high level of confidence. In
particular, we describe a Bayesian statistical frame-
work for a posterior estimate of the standard deviation
of gene measurements based on a limited number of
replications. We also describe an algorithm to compute a
posterior estimate of differential expression for each
gene based on the experiment-wide global false positive
and false negative level for a DNA microarray data set.
This allows the experimenter to compute posterior
probabilities of differential expression for each individ-
ual differential gene expression measurement.

During the last 50 years, a great deal of knowledge about the
regulation of gene expression in Escherichia coli has been ob-
tained. We now know that the expression of genetic informa-
tion is regulated at three hierarchical levels: global control of

basal level gene expression by chromosome structure, control of
regulons and stimulons by global regulatory proteins, and oper-
on-specific controls (1, 2). At the most general level, the expres-
sion of all genes is regulated by DNA supercoiling-dependent
mechanisms that affect the topology of the entire chromosome
(3). At the next level, large groups of genes are regulated by
abundant regulatory proteins with rather degenerate binding
site specificity that, in cooperation with operon-specific con-
trols, regulate often-overlapping groups of metabolically re-
lated operons, called regulons and stimulons, in response to
environmental or metabolic signals. At the most basic level,
individual genes or operons are regulated by less abundant
proteins that bind in a site-specific manner to one or a few sites
to regulate single genes or operons. Isolated examples of each
level of control have been described. However, the definition of
these hierarchical control levels in a depth sufficient to under-
stand genetic regulatory networks on a global scale, all the way
from specific circuits up to the complete regulatory network of
the cell, remains to be elucidated (4). Before we can infer and
model these regulatory networks, individual components at
each hierarchical level must be identified. In other words, a
more complete definition of the genes of specific regulons and
stimulons must be obtained. It is now possible to obtain much
of this information using high-throughput technologies such as
DNA microarrays.

The purpose of the work presented here is to identify the
network of genes that are differentially regulated by the global
E. coli regulatory protein, leucine-responsive regulatory pro-
tein (Lrp),1 during steady state growth in a glucose supple-
mented minimal salts medium. Lrp is a DNA-binding protein
that has been reported to affect the expression of approxi-
mately 55 genes.2 In most cases, Lrp has been reported to
activate operons that encode genes for biosynthetic enzymes
and repress operons that encode genes for catabolic enzymes (5,
6). The intermediary metabolite, L-leucine, is required for the
binding of Lrp at some of its DNA target sites; however, at
other sites L-leucine inhibits DNA binding, and at still other
sites it exerts no effect at all. Although the physiological pur-
pose of Lrp-mediated gene regulation remains unclear, it has
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been suggested that it might function to coordinate cellular
metabolism with the nutritional state of the environment by
monitoring the levels of free L-leucine in the cell. The experi-
ments reported here were carried out in the absence of exoge-
nous L-leucine.

Although many data analysis techniques have been applied
to DNA microarray data, this field is still evolving and has not
yet reached a level of maturity. Therefore, much of the empha-
sis of the work reported here is directed toward the assessment
of methods to identify differentially expressed genes with a
high level of confidence. In particular, we apply a Bayesian
statistical framework to derive a regularized estimate of the
standard deviation of the level of expression of each gene in
each condition based on a limited number of replications, and
an algorithm to compute a posterior estimate of differential
expression for each gene to estimate the global false positive
rate specific for each DNA microarray experiment.

MATERIALS AND METHODS

Chemicals and Reagents—Avian myeloblastosis virus reverse tran-
scriptase, ATP�S, glycogen, and Sephadex G-25 Quickspin columns
were obtained from Roche Molecular Biochemicals. Ribonuclease inhib-
itor III was from Panvera/Takara. Ultrapure deoxynucleoside triphos-
phates and DNase I were from Amersham Biosciences. Random hex-
amer oligonucleotides and T4 polynucleotide kinase were from New
England Biolabs. [�33P]dCTP (2–3000 Ci/mmol) was from PerkinElmer
Life Sciences. DNA filter arrays (Panorama E. coli gene arrays) were
from Sigma-Genosys Biotechnologies. DNA-free kit and 5 M NaCl
RNase-free, DNase-free solution were from Ambion, Inc. 16 S rRNA-
specific primers, 23 S rRNA-specific primers, and Biotin-Oligo 948 (high
performance liquid chromatography-purified) oligonucleotides were
from Operon. MMLV reverse transcriptase, dithiothreitol, and ribonu-
clease H (RNase H) were from Epicentre Technologies. RNeasy total
RNA isolation kit and RNA/DNA mini column kit were from Qiagen.
Polyethylene oxide-iodoacetyl-biotin, ImmunoPure NeutrAvidin, strep-
tavidin, and 10% Tween 20 were from Pierce. Novex XCell SureLockTM

MiniCell and 4–20% TBE gel were from Invitrogen. 5� sucrose gel
loading dye was from Amresco. SYBR Gold and R-phycoerythrin
streptavidin were from Molecular Probes. Acetylated bovine serum
albumin (BSA) solution and phosphate-buffered saline (pH 7.2) were
from Invitrogen. All other chemicals were obtained from Sigma.

Bacteria Strains and Growth Conditions—Strain IH-G2490
(ilvPG::lacZYA) was constructed by ligating a 515-bp EcoRI-BamHI
DNA fragment containing a 494-bp ilvGMEDA-derived HinFI fragment
(base pair position �245 to �249) into the EcoRI and BamHI sites of the
lacZ-truncated pRS551� (yielding the reporter plasmid pRSG2490) and
integrating this reporter plasmid construct into the bacterial chromo-
some of the polA-deficient strain, NO3434, as described previously (7).
An isogenic lrp derivative of strain IH-G2490 was created by general-
ized P1 transduction of the lrp-35::Tn10 allele into this strain according
to the methods of Miller (8) to yield strain IH-G2491 (ilvPG::lacZYA,
lrp::Tn10). The genes of the chromosomal lac operon are transcribed
from the ilvPG promoter in both strains, which is repressed by the
binding of Lrp in the leader-attenuator region upstream of the ilvG
translational start site. Cells were grown in 50 ml of MOPS medium (9)
containing 0.4% glucose in 250-ml Erlenmeyer flasks at 37 °C as de-
scribed previously (10).

Isolation of Total RNA—Total RNA was isolated from cells at an A600

of 0.5–0.6. Ten-ml samples of log phase cells were pipetted directly into
10 ml of boiling lysis buffer (1% SDS, 0.1 M NaCl, 8 mM EDTA) and
mixed at 100 °C for 1.5 min. These samples were transferred to 125-ml
Erlenmeyer flasks, mixed with an equal volume of hot acid phenol (pH
4.3), and shaken vigorously for 6 min at 64 °C. After centrifugation, the
aqueous phase was transferred to a fresh Erlenmeyer flask and the hot
acid phenol extraction procedure was repeated. The second aqueous
phase was extracted with phenol-chloroform-isoamyl alcohol (25:24:1;
pH 4.3) at room temperature, and twice with chloroform-isoamyl alco-
hol (24:1). Total RNA was precipitated with two volumes of ethanol in
0.3 M NaOAc (pH 5.3), washed with 70% ethanol, and redissolved in a
10 mM Tris, 1 mM EDTA solution (pH 8.0). Residual genomic DNA was
removed with the DNA-free kit of Ambion Inc. according to the instruc-
tions from the manufacturer. The RNA concentration was determined
by absorption at 260 nm. In all cases, independent 10-ml samples from
three separate cultures were processed in parallel.

cDNA Synthesis and Target Labeling Conditions for the Nylon Array

Experiments—For random hexamer-primed cDNA synthesis, 20 �g of
total RNA and 37.5 ng of random hexamer primers were heated at 70 °C
for 3 min and quickly cooled on ice. cDNA synthesis was performed at
42 °C for 3 h in a 60-�l reaction mixture containing: RNA and primer
mixture; reverse transcriptase buffer (Roche); 1 mM amounts each of
dATP, dGTP, and dTTP; 50 �Ci of [�-33P]dCTP; 20 units of ribonuclease
inhibitor III; and 4 �l (88 units) of avian myeloblastosis virus reverse
transcriptase. Labeled cDNA targets were separated from unincorpo-
rated nucleotides on Sephadex G-25 Quickspin columns.

mRNA Enrichment and Target Labeling Conditions for the Af-
fymetrix GeneChipTM Experiments—To enrich the proportion of mRNA
in the total RNA preparation, 300 �g of total RNA from IH-G2490 (lrp�)
or IH-G2491 (lrp�) was prepared as described above. Each 300-�g total
RNA preparation was split into 12 aliquots to increase the efficiency of
the enrichment procedure. All reactions were performed in PCR tubes
in a thermocycler. For each reaction, 25 �g of total RNA were mixed
with 70 pmol of a rRNA-specific primer mix in a final volume of 30 �l.
Each specific primer mix included three specific primers for 16 S rRNA
(5�-CCTACGGTTACCTTGTT-3�, 5�-TTAACCTTGCGGCCGTACTC-3�,
and 5�-TCCGATTAACGCTTGCACCC-3�) and five specific primers for
23 S rRNA (5�-cctcacggttcattagt-3�, 5�-CTATAGTAAAGGTTCACGGG-
3�, 5�-TCGTCATCACGCCTCAGCCT-3�, 5�-TCCCACATCGTTTCCCA-
C-3�, and 5�-CATGGAAAACATATTACC-3�). This mixture was heated
to 70 °C for 5 min and quickly cooled to 4 °C. 10 �l of 10� MMLV
reverse transcriptase buffer (0.5 M Tris-HCl (pH 8.3), 0.1 M MgCl2, and
0.75 M KCl), 5 �l of 10 mM dithiothreitol, 2 �l of 25 mM dNTPs mix, 3.5
�l of 20 units/�l SuperRNasin, 6 �l of 50 units/�l MMLV reverse
transcriptase, and water were added to each tube to a final volume of
100 �l. The reactions were incubated at 42 °C for 25 min, and incuba-
tion was continued at 45 °C for 20 min for cDNA synthesis. To remove
the rRNA moiety from the rRNA/cDNA hybrid, 5 �l of 10 units/�l
RNase H was added and the mixture was incubated at 37 °C for 45 min.
RNase H was inactivated by heating at 65 °C for 5 min. Newly synthe-
sized cDNA was removed by incubation with 4 �l of 2 units/�l DNase I
and 1.2 �l of 20 units/�l SuperRNasin at 37 °C for 2 h. Four reactions
were combined for RNA cleanup with a single Qiagen RNeasy mini
column. The quantity of enriched mRNA was measured by absorbance
at 260 nm. A typical yield is 10–20 �g of RNA from 300 �g of total RNA
constituting a 10–20-fold enrichment of mRNA to rRNA.

For the RNA fragmentation, a maximum of 20 �g of RNA was added
to a PCR tube containing 10 �l of 10� NEB buffer for T4 polynucleotide
kinase in a final volume of 88 �l. The tube was incubated at 95 °C for 30
min and cooled to 4 °C.

For the RNA 5�-thiolation and biotin-labeling reaction, 2 �l of 5 mM

ATP�S and 10 �l of 10 units/�l T4 polynucleotide kinase were incu-
bated with the fragmented RNA at 37 °C for 50 min. The reaction was
inactivated by heating to 65 °C for 10 min and cooled to 4 °C. Excess
ATP�S was removed by ethanol precipitation. Fragmented thiolated
RNA was collected by centrifugation in the presence of glycogen (0.25
�g/�l) and resuspended in 90 �l of distilled water (dH2O). 6 �l of 500
mM MOPS (pH 7.5) and 4.0 �l of 50 mM polyethylene oxide-iodoacetyl-
biotin were added to the fragmented thiolated RNA and incubated at
37 °C for 1 h. The biotin-labeled RNA was isolated by ethanol precipi-
tation, washed twice with 70% ethanol, and dried and dissolved in
20–30 �l of molecular biology grade water. The quantity of the biotin-
labeled RNA was measured by absorbance at 260 nm. The total yield for
the entire procedure is typically 2–4 �g of biotin-labeled RNA from 300
�g of total RNA. The efficiency of RNA fragmentation and biotin label-
ing can be monitored with a gel shift assay where the biotin-labeled
RNA is pre-incubated with avidin prior to electrophoresis. Biotin-la-
beled RNA is retarded during electrophoresis because of the avidin-
biotin interaction. The position of the RNA in the gel addresses the
fragmentation efficiency. The amount of shifted RNA indicates the
efficiency of the biotin labeling. Inefficiencies in either of these param-
eters should be addressed before proceeding to the hybridization step.

Hybridization to Nylon Filters—The nylon filters were soaked in 2�
SSPE (20� SSPE contains 3 M NaCl, 0.2 M NaH2PO4, and 25 mM EDTA)
for 10 min and prehybridized in 10 ml of prehybridization solution (5�
SSPE, 2% SDS), 1� Denhardt’s solution (50� Denhardt’s solution
contains 5 g of Ficoll, 5 g of polyvinylpyrrolidone, 5 g of bovine serum
albumin, and H2O to 500 ml), and 0.1 mg/ml sheared herring sperm
DNA) for at least 1 h at 65 °C. 5–7 � 107 cpm of cDNA targets in 500 �l
of prehybridization solution were heated at 95 °C for 10 min, rapidly
cooled on ice, and added to 5.5 ml of prehybridization solution. The
prehybridization solution was removed and replaced with the hybrid-
ization solution. Hybridization was carried out for 15–18 h at 65 °C.
Following hybridization each filter was rinsed with 50 ml of 0.5� SSPE
containing 0.2% SDS at room temperature for 3 min, followed by three
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washes in the same wash solution at 65 °C for 20 min each. The filters
were partially air dried, wrapped in Saran Wrap, and exposed to a
phosphor screen for 15–30 h. Filters were stripped by microwaving at
30% maximal power (1400 watts) in 500 ml of 10 mM Tris solution (pH
8.0) containing 1 mM EDTA and 1% SDS for 20 min. Stripped filters
were wrapped in Saran Wrap and stored in the presence of damp paper
towels in sealed plastic bags at 4 °C.

Hybridization to Affymetrix GeneChips—For hybridization of biotin-
ylated RNA targets to the Affymetrix GeneChips, 2–4 �g of fragmented
biotin-labeled RNA of IH-G2490 (lrp�) and IH-G2491 (lrp�) were used
for each GeneChip. The hybridization solution for each array was pre-
pared with 100 �l of 2� MES hybridization buffer (200 mM MES, 2 M

NaCl, 40 mM EDTA, and 0.02% Tween 20), 1 �l of 100 nM Biotin-Oligo
948 (5�-biotin-GTCAAGATGCTACCGTTCAG-3�), 2 �l of 10 mg/ml her-
ring sperm DNA, 2 �l of 50 mg/ml BSA, and 2–4 �g of fragmented
biotin-labeled RNA and brought final volume to 200 �l with molecular
biology grade water. The GeneChip arrays were equilibrated to room
temperature immediately before use. The hybridization solution pre-
pared above was added to each GeneChip and incubated in a GeneChip
hybridization oven (Affymetrix) at 45 °C for 16 h at a rotation rate of 60
rpm.

Following hybridization, the stain and wash procedures were carried
out in an Affymetrix GeneChip Fluidics Station 400 using the ProKGE-
WS2 fluidics script to run the machine. Streptavidin solution mix (300
�l of 2� MES stain buffer, 24 �l of 50 mg/ml BSA, 6 �l of 1 mg/ml
streptavidin, and 270 �l of dH2O), antibody solution (300 �l 2� MES
stain buffer, 24 �l of 50 mg/ml BSA, 6 �l of 10 mg/ml normal goat IgG,
6 �l of 0.5 mg/ml biotin anti-streptavidin, and 264 �l of dH2O) and
SAPE solution (300 �l of 2� MES stain buffer, 24 �l of 50 mg/ml BSA,
6 �l of 1 mg/ml streptavidin-phycoerythrin, and 270 �l of dH2O) were
prepared in amber tubes for the staining of each probe array. After
hybridization, the hybridization solution was removed and kept at 4 °C.
Each GeneChipTM was filled with 300 �l of nonstringent wash buffer
(6� SSPE, 0.01% Tween 20, 0.005% Antifoam). The GeneChips were
inserted into the fluidics station, and the ProKGE-WS2 protocol was
selected to control the staining and washing of the probe arrays. After
the procedure was complete, the GeneChips were removed from the
fluidics station and checked for large bubbles or air pockets before
scanning. The buffer in the GeneChips were drained and refilled with
nonstringent buffer if bubbles were present.

Experimental Design for Nylon Filter DNA Array Experiments—The
experimental design for the nylon filter DNA array experiments re-
ported here is diagrammed in Fig. 1. In experiment 1, filters 1 and 2
were hybridized with 33P-labeled, random hexamer-generated cDNA
targets complementary to each of three RNA preparations (RNA 1–3)
obtained from the cells of three individual cultures of the lrp� strain
(IH-G2490). These three 33P-labeled cDNA target preparations were
pooled prior to hybridization to the full-length ORF probes on the filters
(experiment 1). Following PhosphorImager analysis, these filters were

stripped and again hybridized with pooled, 33P-labeled cDNA targets
complementary to each of another three independently prepared RNA
preparations (RNA 1–3) from the lrp� (IH-G2491) (experiment 1). This
procedure was repeated two more times with filters 1 and 2 using two
more independently prepared pools of cDNA targets (experiment 2,
RNA 4–6). Another set of filters, filters 3 and 4, were used for experi-
ments 3 and 4 as described for experiments 1 and 2. This protocol
results in duplicate filter data for four experiments performed with
cDNA targets complementary to four independent prepared sets of
pooled RNA. Thus, because each filter contains duplicate spots for each
ORF and duplicate filters were used for each experiment, four meas-
urements for each ORF from each experiment were obtained. These
four measurements for each experiment were averaged for further
statistical analysis.

Experimental Design for Affymetrix GeneChip Experiments—The ex-
perimental design for the Affymetrix GeneChip experiments reported
here is diagrammed in Fig. 2. The same 24 total RNA preparations used
for the nylon filter experiments were pooled into sets of 3 and used for
the preparation of biotin-labeled RNA targets for hybridization to
Affymetrix GeneChips. For experiments 1–4, four GeneChips were
hybridized with biotin-labeled RNA pools 1–3, 4–6, 7–9, and 10–12
prepared from lrp� cells, and four GeneChips were hybridized with
biotin-labeled RNA pools 1–3, 4–6, 7–9, and 10–12 prepared from lrp�

cells, respectively. One average difference measurement for each gene
probe set on each GeneChip was obtained for subsequent data process-
ing and analysis.

Data Acquisition from the Nylon Filter DNA Array—A commercial
software package obtained from Research Imaging Inc. (DNA ArrayVi-
sion) was used to grid the 16-bit image file obtained from the Phosphor-
Imager, to record the pixel density of each of the 18,432 addresses on
each filter, and to perform the background subtractions. 8,580 of the
addresses on each filter are spotted with duplicate copies of each of the
4,290 E. coli ORFs. The remaining 9,852 empty addresses were used for
background measurements. Because the backgrounds were quite con-
stant, a global average background measurement was subtracted from
each experimental measurement, although local background calcula-
tions are possible. Greater than 4 logs of linearity for the Phosphor-
Imager-derived data were observed.

Data Acquisition of Affymetrix GeneChips—Each GeneChip array was
scanned twice with an HP GeneArray confocal laser at a 3 �M resolution,
and the intensities at each perfect match (PM) and mismatch (MM) probe
cell from both scans were averaged and saved as a *.DAT file. The average
intensity of each GeneChip was globally scaled to 2500 and saved as a
*.CEL. These probe pair measurements for each probe set were used for
subsequent data processing and statistical analysis.

Model-based Oligonucleotide GeneChip Analysis—Gene expression
values from Affymetrix GeneChips are based on the average difference
(AD) between hybridization signals of PM and MM oligonucleotide
probe sets for each gene as described in the expression analysis tech-

FIG. 1. Experimental design for ny-
lon filter DNA array experiments. See
“Materials and Methods” for description.
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nical manual from Affymetrix. The AD value of each probe set is
calculated as AD � �(PM-MM)/number of probe pairs. Algorithms
incorporated into Affymetrix software remove probe pairs that are out
of a given range when calculating AD values for each probe set. In this
process, the mean and standard deviation are calculated for intensity
differences (PM � MM) across the entire probe set (excluding the
highest and lowest values), and values within a set number of standard
deviations (3 as default) are not included in the calculation. The advan-
tage is that this process minimizes the variance introduced by experi-
mental or biological error by removing the outliers present in each
probe set. The disadvantage is this that this process does not always
remove the same probe pairs for the calculation of the AD values among
GeneChips. This can lead to the misinterpretation of the gene expres-
sion profiles obtained from GeneChip experiments. To alleviate this
problem, a model-based method incorporated into a program called
dChip has been described by Li and Wang (11). This method maintains
constant probe pair set identities across all GeneChips while excluding
outliers because of cross-hybridization, contamination during hybrid-
ization, or manufacturing defects that affect probe set measurements.
For all of the GeneChip experiments reported here, each probe pair set
from the *.CEL files was modeled by the dChip software prior to
statistical analysis.

Statistical Methods—As described above, the experimental design
employed in this study consists of 33P-labeled cDNA target preparations
for each of two genotypes hybridized to nylon filters, or three biotiny-
lated mRNA target preparations hybridized to Affymetrix GeneChips.
The designs for these experiments are depicted in Figs. 1 and 2. For
each measurement, a background subtracted estimate of expression
level for each gene was obtained and scaled to total counts by dividing
each individual gene expression value by the total of all values on the
filter or GeneChip. Thus, each normalized gene level is expressed as a
fraction of the total mRNA hybridized to each DNA array.

For any given measurement, a value greater than zero (indicating an
expression level) or a zero (indicating an expression level lower than
background) is obtained. Only those genes exhibiting an expression
level greater than zero in all experiments were used for statistical
analysis. Gene measurements containing zero expression values were
set aside. Among this set of genes, those with zero expression values for all
measurements in one genotype, and all values greater than zero for all
measurements of another genotype for each experiment were identified.
The significance of these results was analyzed by ranking these genes in
ascending order according to their coefficients of variance of the four
greater than zero measurements. The remaining genes were analyzed
both by a simple t test and a regularized t test based on a Bayesian
statistical framework described under “Results and Discussion.”

Data Accession—All of the raw and processed data for the experi-
mental results reported here are available in tabular format as supple-
mental data in the on-line version of this article.

RESULTS AND DISCUSSION

An ad Hoc Method for the Estimation of Global False Positive
Levels—To interpret the results of a high dimensional DNA
array experiment, it is necessary to determine the global false
positive level inherent in the data set being analyzed. The
global false positive level reflects all sources of experimental
and biological variation inherent in a DNA array experiment.
The basic idea is to infer the false positive level in the control
versus treatment situation from the false positive level ob-
served with the control versus control (and/or treatment versus,
treatment) comparison. With this information, a global level of
confidence can be calculated for differentially expressed genes
measured at any given statistical significance level. For exam-
ple, consider an experiment comparing the gene expression
profiles of two genotypes, where an average of 10 genes are
observed to be differentially expressed with a p value less than
0.0001 when gene expression profiles from one genotype are
compared with data of the same genotype (e.g. lrp� versus lrp�

or lrp� versus lrp�). Because no differential expression is ex-
pected in these comparisons, these 10 genes are clearly false
positives generated by chance occurrences driven by experi-
mental errors and biological variance. Now, if 100 genes are
differentially expressed with a p value less than 0.0001 when
the data from one genotype (lrp�) are compared with the data
from the other genotype (lrp�), it is reasonable to infer that we
can be only 90% confident that the differential expression of
any one of these 100 genes is biologically meaningful because
10 false positives are expected from this data set. This example
demonstrates that, although the confidence level based on the
measurement for an individual gene may exceed 99.99% for
two treatment conditions (local confidence of 0.0001), the con-
fidence that this gene is differentially expressed might be only
90% (global confidence of 0.9). This example defines an ad hoc
method of comparing control to control data to derive an esti-
mate of an experiment-wide false positive level.

We applied this ad hoc method for the estimation of false
positive levels of the experiments described here by averag-
ing the four measurements for each gene from the duplicate
control filters of each experiment hybridized with labeled
targets from the control strain IH-G2490 (lrp�) and compar-
ing these averaged values of control data from experiments 1
and 3 to the averaged values of control data from experiments
2 and 4 (Fig. 1). In another analysis, we compared control
data from experiments 1 and 4 to the averaged values of
control data from experiments 2 and 3. Equivalent compari-
sons were performed with filters hybridized with labeled
targets from the experimental strain (IH-G2491 (lrp�)).
These particular two-by-two (control versus control or exper-
imental versus experimental) comparisons were chosen be-
cause they average across experimental errors and biological
differences both among filters and RNA preparations. The
results of a simple t test analysis of these data were ranked
in ascending order of the p values for each gene measurement
based on the t test distribution. The results of these statisti-
cal analyses are shown in Table I.

The data in Table I show that, among the control versus
control or experimental versus experimental comparisons, no
genes exhibited a p value less than 0.0001. However, an exam-
ination of the p values observed when the control data were
compared with the experimental data shows that 12 genes
were differentially expressed with a p value less than 0.0001.
Thus, we can be fairly certain that these 12 genes are differ-
entially expressed because of biological reasons and not by
chance occurrences driven by experimental error and biological
variance. On the other hand, we know from the literature that
more than 12 genes are regulated by Lrp (5, 6). This demon-

FIG. 2. Experimental design of the Affymetrix GeneChip ex-
periments. See “Materials and Methods” for description.
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strates that, given the experimental errors inherent in this
experiment, the differentially expressed levels of most genes
cannot pass this stringent statistical test. Therefore, to iden-
tify other differentially expressed genes, we must lower the
stringency of our statistical criterion. The data in Table I
show that, as the p value is raised to 0.005, we observe an
additional 122 genes that are differentially expressed at this
threshold level. At the same time, raising the statistical
threshold to 0.005 reveals an average of 3.75 genes that
appear differentially expressed with a p value equal to or less
than 0.005 when the control or experimental data sets are
compared with themselves. This means that, given this com-
plete data set from four replicate experiments, we expect at
least 3.75 false positives among the 134 genes differentially
expressed with a p value equal to or less than 0.005. There-
fore, our global confidence in the identification of any one of
these 134 genes as differentially expressed genes is esti-
mated to be 97%.

It should be emphasized that relaxing the p value threshold
rapidly increases the average number of false positives in the
control (lrp� versus lrp� or lrp� versus lrp�) data sets relative
to the number of genes differentially expressed at the same p
value in the experimental (lrp� versus lrp�) data set and,
therefore, decreases the confidence with which differentially
expressed genes can be identified.

Improved Statistical Inference from DNA Array Data Using a
Bayesian Statistical Framework—A simple t test evaluates the
distance between the means of two groups normalized in terms
of the within-group standard deviations. The result is that
large differences between genotypes for any given ORF will be
declared nonsignificant if the expression level of that ORF is
unreplicable within experimental treatments. Conversely,
small differences in expression will be determined to be sta-
tistically significant for a given ORF if expression levels for
that ORF are replicable within treatments. In short, the t test
statistic is constructed by scaling the difference in gene ex-
pression levels between genotypes relative to the observed
variances within genotypes. p values based on the t test
statistic range from 1.0 for gene expression levels with iden-
tical values associated with the null hypothesis to very small
p values for differential gene expression levels that are
highly significant.

In a perfect world, all DNA microarray experiments would be
highly replicated. Such replication would allow accurate esti-
mates of the variance within experimental treatments to be
obtained, and the t test would perform well, i.e. the variance for
each gene measurement would be based on many measure-
ments for that gene. However, DNA microarray experiments
are expensive and time-consuming to carry out. As a result, the
level of replication within experimental treatments is often
low. This results in poor estimates of variance and a corre-
spondingly poor performance of the t test itself. On the other
hand, we have shown that the confidence in the interpretation
of DNA microarray data with a low number of replicates can be

improved by using a Bayesian statistical approach that incor-
porates information of within treatment measurements (12,
13). This results in a more consistent set of differentially ex-
pressed genes identified with fewer replicates. The Bayesian
approach is based on the observation that genes of similar
expression levels exhibit similar variance. Thus, more robust
estimates of the variance of a gene can be derived by pooling
neighboring genes with comparable expression levels. For the
analysis of the data reported here, we ranked the mean gene
expression levels of the replicate experiments in ascending
order, used a sliding window of 101 genes, and assigned the
average standard deviation of the 50 genes ranked below and
above each gene as the background standard deviation for that
gene. The variance of any gene within any given treatment
then can be estimated by the weighted average of the treat-
ment-specific background variance and the treatment-specific
empirical variance across experimental replicates. In the
Bayesian approach employed in this study, the weight given
to the within experiment gene variance estimate is a function
of the number of experimental replicates. This leads to the
desirable property that the Bayesian approach employing
such a regularized t test converges on the same set of differ-
entially expressed genes as the simple t test but with fewer
replicates (12).

A comparison of the results of statistical analyses employing
a simple t test and a regularized t test is shown in Table II.
Here, the simple ad hoc method of comparing controls to con-
trols was used to demonstrate that the number of false posi-
tives expected at a given p value is lower when the Bayesian
statistical framework is employed. For example, only 2 false
positives are expected at a p value threshold less than 0.005
with the Bayesian regularization, whereas 3.75 false positives
are expected at this same p value threshold with the t test
alone. At the same time, 188 differentially expressed genes
with a p value less than 0.005 are observed with the regular-
ized t test, whereas only 134 genes are identified at this same
threshold with the simple t test (Table II). Thus, more genes
are identified with a lower false positive level and a higher
global confidence level. In other words, complementing the
empirical variance of the four experimental measurements for
each gene with the corresponding background variance within
an experiment improves our confidence in the identification of
differentially expressed genes and the number of genes that
can be identified at a given p value threshold based on a t test
distribution.

Although the data in Table II show that the Bayesian sta-
tistical approach using a regularized t test identifies more
genes with a higher level of global confidence than the simple t
test, the natural question that arises is whether these genes
are true positives, i.e. whether these are Lrp-regulated genes.
This question is addressed by the data shown in Fig. 3. For
example, of the 44 genes differentially expressed between lrp�

and lrp� strains with a p value less than 0.001 identified by a
simple t test, 10 are known to be Lrp-regulated (Table III).

TABLE 1
Determination of confidence level for differentially expressed genes

p value
No. of genesa

% Confidence
(ad hoc) PPDE (� p)bControl vs. control and

experimental vs. experimental
Control vs.

experimental

�0.0001 0 12 	100 0.989
�0.0005 0.25 30 99.2 0.980
�0.001 1 44 97.7 0.975
�0.005 3.75 134 97.2 0.955
�0.01 7.25 208 96.5 0.944

a Calculated by averaging the control or experimental measurements and comparing experiments 1 and 3 versus 2 and 4 or experiments 1 and
4 versus 2 and 3 that average data across filters and RNA preparations.

b Ref. 17.
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However, among the 39 genes differentially expressed between
lrp� and lrp� strains with a p value less than 0.0001 identified
by the Bayesian approach, 17 are known to be Lrp-regulated
(Table IV).

Why does the regularized t test identify more Lrp-regulated

genes? The answer to this question lies in the fact that all of the
genes identified to be differentially expressed with a p value less
than 0.005 with the regularized t test exhibit -fold changes
greater than 
1.7-fold (Fig. 3B). However, many genes identified
to be differentially expressed with a p value less than 0.005 with
the simple t test exhibit -fold changes as small as 
1.2-fold (Fig.
3A). Furthermore, the 100 genes with the lowest p values iden-
tified as differentially expressed by both methods contain only 43
genes in common. Thus, many of the genes identified by the
simple t test that are excluded by the Bayesian approach are
genes that show small -fold changes. In general, these genes with
small -fold changes identified by the simple t test are associated
with “too good to be true” within treatment variance estimates,
reflecting underestimates of the within treatment variance when
the number of observations is small. The elimination of this
source of false positives by the Bayesian approach improves the
identification of true positives. However, although this is
desired, genes that are truly differentially expressed with
small -fold changes in the range of 
1.2–1.7-fold will also be
eliminated by the Bayesian approach. For example, of the 16
genes of the top 100 with the lowest p values identified by the
simple t test that are known to be regulated by Lrp, one was
not identified by the Bayesian method. This Lrp-regulated
gene that did not pass the regularized t test was the sdaC
gene, previously reported to be regulated by Lrp 3-fold (14,
15) and measured to be regulated 1.9-fold in the experiment
performed with the DNA arrays. Nevertheless, although this
gene is lost, the overall performance of the regularized t test
surpasses that of the simple t test.

At first glance it might appear that the Bayesian approach
validates the often-used 2-fold rule for the identification of
differentially expressed genes (16), i.e. the identification of
genes differentially expressed between two experimental treat-
ments with a -fold change greater than 2 in, for example, three
of four experiments. This type of reasoning is based on the
intuition that larger observed -fold changes can be more confi-
dently interpreted as a stronger response to the experimental
treatment than smaller observed -fold changes, which of
course is not necessarily the case. An implicit assumption of
this reasoning is that the variance among replicates within
treatments is the same for every gene. In reality, the variance
varies among genes and it is critical to incorporate this in-
formation into a statistical test (12). Clearly, with a back-
ground standard deviation of, for example, 50, differential
expression measurements of 200/100 and 20,000/10,000 have
different significance. This point is further emphasized by
simply examining the scatter plots in Fig. 3. Here, many
genes that appear differentially expressed greater than 2-fold
do not exhibit p values less than 0.005 and a global confi-
dence level of at least 97%. This does not mean that these
might not be Lrp-regulated genes; it simply means that they
are false negatives that cannot be identified at this level of
confidence.

Commonly used software packages do not possess algorithms
for implementing Bayesian statistical methods. Therefore, we

TABLE II
Comparison of nylon filter DNA array data analyzed with a simple t test and a regularized t test

t-test Regularized t-test

p value
No. of genes

% Confidence p value
No. of genes

% Confidence
Control vs. control Control vs. experimental Control vs. control Control vs. experimental

�0.0001 0 12 	100 �0.0001 0 39 	100
�0.0005 0.25 30 99.2 �0.0005 0.25 62 99.6
�0.001 1 44 97.7 �0.001 0.5 79 99.4
�0.005 3.75 134 97.2 �0.005 2 188 98.9
�0.01 7.25 208 96.5 �0.01 3.75 268 98.6

FIG. 3. Scatter plot showing the mean of the fractional mRNA
levels obtained from eight filters hybridized with 33P-labeled
cDNA targets prepared from three pooled RNA preparations
extracted from Escherichia coli K12 strains IH-G2490 (lrp�) and
IH-G2491 (lrp�). A, the larger black dots identify 100 genes differen-
tially expressed between strains IH-G2490 and IH-G2491 with p values
less than 0.0034 based on a simple t test distribution. The circled black
dots identify genes known to be regulated by Lrp. The gray spots
represent the relative expression levels of each of the 2,758 genes
expressed at a level above background in all experiments. The dashed
lines demarcate the limits of 2-fold differences in expression levels. B,
the larger black dots identify 100 genes differentially expressed be-
tween strains IH-G2490 and IH-G2491 with p values less than 0.0014
based on a regularized t test. The circled black dots identify genes
known to be regulated by Lrp. The gray spots represent the relative
expression levels of each of the 2,758 genes expressed at a level above
background in all experiments. The dashed lines demarcate the limits
of 2-fold differences in expression levels.
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developed a statistical program, CyberT, which does accommo-
date this approach. We use the statistical tools incorporated
into CyberT to compare and analyze the gene expression data
from the experiments described here. CyberT is available for
on-line use on the genomics web site of the University of Cal-
ifornia, Irvine.

A Computational Method to Determine False Positive Lev-
els—A computational version of our ad hoc method for esti-
mating false-positive levels has been recently described (17).
The basic idea is to consider the p values as a new data set
and to build a probabilistic model for this new data. When
control data sets are compared with one another (i.e., no
differential gene expression), it is easy to see that the p
values ought to have a uniform distribution between 0 and 1.
In contrast, when data sets from different genotypes or treat-
ment conditions are compared with one another, the distri-
bution of p values will tend to cluster more closely to 0 than
1, i.e., there will be a subset of differentially expressed genes
with “significant” p values. One can use a mixture of � dis-
tributions to model this distribution of p values in the form
shown in Equation 1.

P�p� � �
i�0

K

�i��p;ri,si� (Eq. 1)

For i � 0, we use r0 � s0 � 1 to implement the uniform
distribution as a special case of a � distribution. Thus, K � 1 is
the number of components in the mixture and the mixture
coefficients �i represent the prior probability of each compo-
nent. In many cases, two components (K � 1) are sufficient but
sometimes additional components are needed. In general, the
mixture model can be fit to the p values using the Expectation
Maximization algorithm or other iterative optimization meth-
ods to determine the values of the �, r, and s parameters (17).
From the mixture mode given n genes, the estimate of the
number of genes for which there is a true difference is n(1 � �0).

In the case of the data reported here, the parameters of the
mixture model of Equation 1 with two � components are given
by the following: �0 � 0.56, �i � 0.44, r0 � 1, s0 � 1, r1 � 0.45,
s1 � 3.01. For any p value threshold T, the mixture model
allows us to estimate the rate of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN)

TABLE III
Genes differentially expressed between lrp� and lrp� (control vs. experimental) E. coli strains with a p value less than 0.001

identified with a simple t test
The data are presented as the average (mean) and S.D. of four independent gene expression measurements expressed as a fraction of the total

hybridization signal (total mRNA) on each DNA microarray filter.

Gene namea Control Experimental Control Experimental p value PPDE (� p) Fold

mean mean S.D. S.D.

yecI 3.11E-05 8.48E-05 3.35E-06 7.49E-06 8.62E-06 0.99516 2.73
uvrA 1.28E-03 1.04E-03 1.5E-05 3.37E-05 1.70E-05 0.99386 �1.23
gdhA 9.16E-05 2.73E-04 1.52E-05 2.16E-05 2.18E-05 0.99329 2.98
oppB* 7.51E-05 1.14E-03 2.12E-05 3.79E-04 2.48E-05 0.99298 15.12
b2343 2.82E-05 1.02E-04 3.75E-06 1.92E-05 2.67E-05 0.99280 3.61
artP 6.73E-05 4.23E-04 1.24E-05 1.16E-04 3.60E-05 0.99200 6.28
b1810 1.07E-04 2.32E-04 3.65E-06 3.20E-05 4.47E-05 0.99136 2.17
oppC* 2.01E-04 1.08E-03 2.34E-05 3.61E-04 5.44E-05 0.99074 5.38
gltD* 5.28E-04 2.74E-05 1.28E-04 1.42E-05 5.87E-05 0.99049 �19.27
b1330 1.07E-04 1.58E-04 5.44E-06 9.60E-06 7.16E-05 0.98981 1.47
uup 2.02E-04 1.60E-04 6.65E-06 5.72E-06 7.66E-05 0.98956 �1.26
oppA* 1.62E-03 3.16E-02 7.63E-04 1.03E-02 8.45E-05 0.98920 19.44
malE* 3.56E-04 2.01E-04 2.32E-05 2.17E-05 1.16E-04 0.98793 �1.78
oppD* 8.97E-05 6.55E-04 2.76E-05 2.05E-04 1.16E-04 0.98793 7.30
galP 3.75E-04 2.11E-04 2.25E-05 2.40E-05 1.31E-04 0.98740 �1.78
lysU* 1.81E-04 1.24E-03 7.48E-05 2.78E-04 1.44E-04 0.98697 6.87
hybA 3.53E-04 2.47E-04 2.11E-05 1.50E-05 1.49E-04 0.98682 �1.43
hybC 3.54E-04 2.34E-04 2.20E-05 1.81E-05 1.61E-04 0.98646 �1.51
yhcB 4.25E-05 6.84E-05 2.84E-06 6.28E-06 1.68E-04 0.98625 1.61
yifM_2 1.12E-04 6.74E-05 5.35E-06 7.61E-06 1.81E-04 0.98589 �1.66
ilvG_1* 4.21E-04 9.15E-04 7.55E-05 6.85E-05 2.54E-04 0.98411 2.17
grxB 5.95E-05 3.38E-04 1.92E-05 1.07E-04 2.92E-04 0.98332 5.68
phoP 8.29E-05 2.10E-04 1.20E-05 4.42E-05 3.16E-04 0.98285 2.54
ydjA 1.10E-04 1.79E-04 1.26E-05 1.06E-05 3.54E-04 0.98216 1.62
ydaA 2.61E-04 4.88E-04 3.53E-05 5.45E-05 3.55E-04 0.98214 1.87
yddG 1.77E-04 3.25E-04 2.52E-05 3.37E-05 3.84E-04 0.98165 1.84
emrA 3.58E-04 2.78E-04 2.43E-05 4.57E-06 3.95E-04 0.98147 �1.29
b1685 3.71E-05 2.64E-04 1.20E-05 1.22E-04 4.13E-04 0.98118 7.10
glpA 1.28E-04 8.01E-05 8.54E-06 9.26E-06 4.71E-04 0.98029 �1.59
manA 8.71E-05 2.40E-04 2.16E-05 4.08E-05 4.80E-04 0.98016 2.75
ybeD 1.13E-04 4.01E-04 1.70E-05 1.48E-04 5.15E-04 0.97967 3.55
cfa 2.89E-04 4.89E-04 2.83E-05 6.08E-05 5.16E-04 0.97966 1.69
b3914 6.23E-05 1.97E-04 8.70E-06 5.46E-05 5.44E-04 0.97928 3.16
ybiK 2.03E-04 2.76E-04 1.50E-05 1.47E-05 5.78E-04 0.97884 1.36
yggB 1.73E-04 4.50E-04 3.57E-05 8.50E-05 6.05E-04 0.97850 2.61
amn 4.31E-04 6.51E-04 4.47E-05 4.72E-05 6.07E-04 0.97848 1.51
b1976 1.30E-04 1.77E-04 1.21E-05 6.38E-06 7.56E-04 0.97677 1.36
speB 1.21E-04 3.56E-05 2.09E-05 1.08E-05 7.73E-04 0.97659 �3.40
hdeA 2.40E-04 8.29E-04 8.46E-05 9.90E-05 8.12E-04 0.97619 3.45
lrp* 2.96E-04 1.11E-04 6.21E-05 2.22E-05 8.27E-04 0.97604 �2.67
pheA 9.11E-05 3.41E-04 3.78E-05 4.17E-05 8.36E-04 0.97595 3.75
gst 3.44E-06 7.24E-05 4.05E-06 2.41E-05 8.57E-04 0.97574 21.01
proC 1.76E-04 6.04E-05 5.17E-05 6.99E-06 8.89E-04 0.97543 �2.91
sdaC* 1.82E-04 9.71E-05 2.02E-05 1.76E-05 8.96E-04 0.97536 �1.87

a Known Lrp-regulated genes are identified by an asterisk.
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consistent with the statistical assumptions made to derive the
original set of p values. More precisely, in a general mixture of
� models, we have as follows.

TP � P�p � T and change� � �
i�1

K

�i�
0

T

��p;ri,si�dp (Eq. 2)

TN � P�p � T and no change� � �0�1 	 T� (Eq. 3)

FP � P�p � T and no change� � �0T (Eq. 4)

FN � P�p � T and change� � �
i�1

K

�i�
T

1

��p;ri,si�dp (Eq. 5)

If we set a threshold T below which p values are considered
significant and representative of change, we can estimate the
rates of false positives and false negatives. The posterior prob-
ability for differential expression (PPDE) then can be calcu-
lated for each gene in the experiment with p value p as
PPDE(p) according to Equation 6.

PPDE�p� � P�change
p� �

�
i�1

K

�i��p;ri,si�

�
i�0

K

�i��p;ri,si�

�

�
i�1

K

�i��p;ri,si�

�0 
 �
i�1

K

�i��p;ri,si�

(Eq. 6)

Alternatively, one can calculate a posterior probability of dif-
ferential expression PPDE(� p) for values below a certain
threshold p according to Equation 7.

PPDE� � p� � P�change
p � T� �

�
i�1

K

�i�
0

T

��p;ri,si�dp

�
i�0

K

�i�
0

T

��p;ri,si�dp

(Eq. 7)

The distribution of p values from our lrp� versus lrp� data is
shown in Fig. 4, and a plot of PPDE(p) and PPDE (� p) values
versus p values is shown in Fig. 5. A comparison of the ad hoc
method for determining the global significance for the differ-

TABLE IV
Genes differentially expressed between lrp� and lrp� (control vs. experimental) E. coli strains with a p value less than 0.0001

identified with a regularized t test.
The data are presented as the average (mean) and S.D. of four independent gene expression measurements expressed as a fraction of the total

hybridization signal (total mRNA) on each DNA microarray filter.

Gene namea Control Experimental Control Experimental p value PPDE (� p) -Fold

mean mean S.D. S.D.

oppA* 1.62E-03 3.16E-02 7.63E-04 1.03E-02 5.14E-13 1.00000 19.44
lysU* 1.81E-04 1.24E-03 7.48E-05 2.78E-04 8.88E-10 0.99999 6.87
oppB* 7.51E-05 1.14E-03 2.12E-05 3.79E-04 1.02E-09 0.99999 15.12
oppC* 2.01E-04 1.08E-03 2.34E-05 3.61E-04 3.26E-09 0.99998 5.38
oppD* 8.97E-05 6.55E-04 2.76E-05 2.05E-04 2.69E-08 0.99995 7.30
serA* 2.90E-03 6.56E-04 1.14E-03 1.12E-04 4.08E-08 0.99994 �4.41
ftn 2.36E-04 1.38E-03 1.29E-04 5.46E-04 2.27E-07 0.99984 5.84
rmf 5.79E-05 1.47E-03 4.68E-05 3.35E-04 2.75E-07 0.99982 25.43
hdeA 2.40E-04 8.29E-04 8.46E-05 9.90E-05 2.99E-07 0.99982 3.45
ilvPG::lacY* b 3.68E-04 1.47E-03 4.56E-05 8.10E-04 3.39E-07 0.99980 3.99
hdeB 3.99E-04 1.98E-03 2.58E-04 5.59E-04 4.50E-07 0.99977 4.96
ilvPG::lacA*b 3.31E-04 1.83E-03 1.74E-04 7.48E-04 5.64E-07 0.99974 5.53
artP 6.73E-05 4.23E-04 1.24E-05 1.16E-04 1.42E-06 0.99957 6.28
artI 1.26E-04 5.80E-04 3.79E-05 2.80E-04 2.01E-06 0.99948 4.60
gltD* 5.28E-04 2.74E-05 1.28E-04 1.42E-05 2.34E-06 0.99943 �19.27
ilvG�1* 4.21E-04 9.15E-04 7.55E-05 6.85E-05 4.71E-06 0.99916 2.17
ilvK* 4.16E-04 1.15E-04 1.47E-04 3.22E-05 6.18E-06 0.99903 �3.61
ybeD 1.13E-04 4.01E-04 1.70E-05 1.48E-04 8.55E-06 0.99884 3.55
livH* 4.05E-04 1.24E-04 8.18E-05 5.50E-05 9.07E-06 0.99880 �3.26
uspA 5.42E-04 1.80E-03 3.07E-04 7.43E-04 9.99E-06 0.99874 3.32
pheA 9.11E-05 3.41E-04 3.78E-05 4.17E-05 1.47E-05 0.99844 3.75
grxB 5.95E-05 3.38E-04 1.92E-05 1.07E-04 1.61E-05 0.99836 5.68
b2253 4.24E-04 9.00E-04 8.15E-05 1.50E-04 1.77E-05 0.99827 2.12
hdhA 1.30E-05 2.14E-04 1.22E-05 2.75E-05 1.86E-05 0.99822 16.49
gst 3.44E-06 7.24E-05 4.05E-06 2.41E-05 2.32E-05 0.99800 21.01
oppF* 1.57E-04 4.90E-04 2.82E-05 2.32E-04 2.59E-05 0.99787 3.13
rpoE 1.71E-04 4.35E-04 4.80E-05 7.29E-05 2.67E-05 0.99784 2.55
yhjE 5.44E-04 1.82E-04 6.88E-05 1.20E-04 2.91E-05 0.99773 �2.98
yggB 1.73E-04 4.50E-04 3.57E-05 8.50E-05 2.91E-05 0.99773 2.61
rpoS 3.35E-04 8.77E-04 1.21E-04 3.07E-04 3.03E-05 0.99768 2.62
b1685 3.71E-05 2.64E-04 1.20E-05 1.22E-04 3.66E-05 0.99743 7.10
livM* 6.80E-04 2.74E-04 1.38E-04 1.55E-04 4.24E-05 0.99721 �2.48
rseA 2.41E-04 5.82E-04 5.61E-05 1.32E-04 4.51E-05 0.99712 2.42
ilvPG::lacZ*b 8.10E-04 1.81E-03 4.51E-05 6.17E-04 4.60E-05 0.99709 2.24
gdhA 9.16E-05 2.73E-04 1.52E-05 2.16E-05 5.44E-05 0.99681 2.98
livJ* 1.16E-03 2.69E-03 5.03E-04 4.42E-04 5.80E-05 0.99669 2.32
fimA* 3.35E-04 7.82E-05 1.46E-04 3.08E-05 6.35E-05 0.99652 �4.29
trxA 9.05E-05 2.84E-04 2.99E-05 4.29E-05 7.43E-05 0.99621 3.13
ydaR 5.15E-05 2.62E-04 2.61E-05 5.61E-05 8.40E-05 0.99595 5.08

a Known Lrp-regulated genes are identified by an asterisk.
b lac genes under the control of the Lrp-regulated ilvPG promoter-regulatory region.
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ential expression of a given gene and the computational
method is presented in Table V. It is satisfying to see that these
data compare well.

It is clear from the data of Fig. 5 that for each p value
threshold T, there is a tradeoff between the rates of true and
false positives. A low conservative p value threshold leads to
few FP but may also reduce the TP rate. A large p value
threshold ultimately allows one to recover all the TP but at the
cost of increasing the FP rate. This fundamental tradeoff is
usually captured in statistics by using a receiver operating
characteristic curve obtained by plotting the true hit rate (or
sensitivity) defined by TP/(TP � FN) versus the false hit rate,
FP/(FP � TN) (86). In the mixture model above, a simple
calculation shows that for a given p value threshold T,

FP
FP 
 TN

and
TP

TP 
 FN
�

�
i�1

K

�i�
0

T

��p;r,si�dp

1 	 �0
(Eq. 8)

With two components in the mixture (K � 1), the last expres-
sion reduces to the following.

TP
TP 
 FN

��
0

T

��p;�1,s1�dp (Eq. 9)

Thus, for our Lrp data the receiver operating characteristic
curve in Fig. 6 is simply the distribution function of the second
� component in the mixture. For instance, this curve demon-
strates that with a 76% true hit rate we can expect a 20% false
hit rate.

The Functional Classes of Genes Differentially Expressed in
lrp� and lrp� E. coli Strains—To facilitate the following dis-
cussions, we limit our considerations to the 100 genes differen-
tially expressed with the lowest p value based on a regularized
t test. The 100 genes differentially expressed between lrp� and
lrp� E. coli strains with a p value less than 0.0014 and a PPDE
greater than 0.98 are listed in Table VI. In the text we simply
refer to the -fold change for each gene. However, as emphasized
above, it should be kept in mind that reporting -fold changes is
incomplete and can be misleading. For this reason, mean ex-
pression levels, standard deviations, p values, and PPDE val-
ues for the 39 genes with p values less than 0.0001 are reported
in Table IV. Additional statistical data for the remaining 61
genes with a p value less than 0.0014 as well as all genes
expressed at a level of above background in all four experi-
ments can be found in the supplemental data (available in the
on-line version of this article).

Because the physiological purpose of Lrp is presumed to be the
coordination of gene expression levels with the nutritional and
environmental conditions of the cell (5, 6), it was pleasing to
discover that most of the genes affected by Lrp are ones that
encode products involved in small molecular and macromolecule
synthesis or degradation, as well as gene systems involved in
small molecule transport and environmental stress responses.
These genes can be sorted into the functional groups shown in
Fig. 7; they also are listed in Table VI and discussed below.

Small Molecule Biosynthesis—Among the genes differen-
tially expressed between lrp� and lrp� strains, 11 are genes
required for amino acid biosynthesis. Of these, the ilvG, ilvM,
leuB, and serA genes are members of operons previously re-
ported to be regulated by Lrp.

The ilvG and ilvM genes, the first two genes of the ilvG-
MEDA operon, encode the two subunits of acetohydroxy acid
synthase II, one of three isoenzymes catalyzing the first step of
the parallel pathway for L-valine and L-isoleucine biosynthesis.
We have previously used an ilvPG::lacZ construct to measure
�-galactosidase activities in the same isogenic lrp� and lrp�

strains employed in this study (7). These results showed that
�-galactosidase was increased 2.5-fold in the lrp� mutant
strain. The data reported here are consistent with this earlier
report. We have also described the presence of a constitutive
internal promoter, ilvPE, located between the ilvM and ilvE
genes of this operon (18). This affect of the internal promoter is
apparent in our DNA microarray data; the expression of the
operon distal ilvEDA genes is decreased only 1.2-fold.

It is interesting that two other genes of the aspartate family
of amino acids previously unknown to be regulated by Lrp
appear in this list (19). These are thrL, the leader polypeptide
of the threonine operon (20–23), and asd, the structural gene
for aspartyl-semialdehyde dehydrogenase (24, 25). This en-
zyme is involved in the conversion of oxaloacetate to homo-
serine, a precursor of threonine and isoleucine. These findings
suggest the possibility that all of the genes of the aspartate
family that convert the TCA cycle intermediate, oxaloacetate,
to amino acids might be sensitive to Lrp-mediated regulatory
effects.

The serA gene encodes phosphoglycerate dehydrogenase, the
first enzyme specific for serine biosynthesis. Newman and col-
leagues (6, 15) have reported that the transcriptional level of
serA is decreased 6-fold in a lrp� strain. Our results exhibit a
similar transcriptional regulation. Newman and colleagues

FIG. 4. Distribution of the p values from the lrp� versus lrp�

data. The fitted model (dashed curve) is a mixture of a � and the
uniform distribution (dotted line).

FIG. 5. Relationship between PPDE and p value. PPDE (� p),
gray points; PPDE(p), black points. The dotted line correlates the num-
ber of genes differentially expressed with PPDE (� p) of 0.97 that are
measured with p � 0.0014.
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(15, 26) also have reported that the expression level of the leu
operon is decreased 11-fold in a lrp� strain and showed that the
growth rate of a lrp� strain is increased by adding leucine to
the growth medium. On the other hand, Landgraf et al. (27)
have suggested that Lrp-mediated regulation of the leu operon
is indirect and reported a much smaller effect (1.4-fold). Our
studies agree with those of Landgraf et al.

Because these known Lrp-regulated genes identified by our
experiments are detected with a high level of measurement
accuracy and confidence, we can be similarly confident that the
expression of other genes in this group are also members of the
Lrp regulon. However, the differential expression of these
newly identified genes could be the consequences of either
primary or secondary Lrp effects. An obvious way to discern
whether or not the operons containing these genes are directly
regulated by Lrp would be to search for Lrp binding sites in
their promoter-regulatory regions (10). Unfortunately, because
of the degeneracy of the consensus Lrp binding sequence, this
is not possible. Even when a 3 of 15 mismatch is allowed, 60%
of all regions 500 base pairs upstream of all E. coli ORFs
contain at least one putative Lrp binding site. Thus, it is
difficult to determine at this time whether the differential
expression of these genes is directly or only indirectly affected
by Lrp.

Small Molecule Transport—22 of the 100 genes listed in
Table VI are involved in small molecule transport. Of these, 11
have been documented to be regulated by Lrp. Products of the
livJ and livKHMGF genes are components of two transport
systems with high affinity for leucine. The livJ gene product
binds leucine, isoleucine, and valine, whereas the livK gene
product is specific for leucine alone. These two systems share a
set of membrane components, products of the livHMGF genes.
Haney et al. (28) have reported that both of these operons are
repressed by Lrp in the presence of high concentration of
leucine. Bhagwat et al. (29) have reported that in the absence of
leucine the expression of the livJ gene is unaffected by Lrp and

that the expression of the livKHMGH operons is activated
approximately 15-fold. Because the experiments reported here
were also performed in the absence of leucine, we would expect
similar results and, in fact, we observe a 2.5–10-fold activation
of the genes for the livKHMGF operon. However, our results
suggest that Lrp is also responsible for a 2-fold repression of
livJ under these growth conditions.

The oppABCDF operon contains genes encoding a periplas-
mic binding protein and transport permease proteins for a wide
range of tripeptide transport systems. Austin et al. (30) have
reported that this operon exhibits high constitutive expression
in a lrp� strain. Accordingly, our results show that the expres-
sion of the oppA and oppB genes is increased 15- and 20-fold,
respectively, but that the expression of the oppC, oppD, and
oppF genes are increased to a lesser extent. These data suggest
the possibility of an unidentified internal promoter between
oppB and oppC.

Four proteins, the malEFG and -K gene products, are required
for maltose uptake in E. coli. These four genes are arranged in
two operons, malEFG and malK-lamB-malM. Tchetina et al. (31)
have reported that transcription of both of these operons are
decreased 50–70% in a lrp� strain grown in glycerol. Our results
demonstrate that the transcription level of both operons also is
decreased approximately 80% in a lrp� strain grown in a glucose-
supplemented minimal MOPS medium. However, because malE
is the only gene of either operon that passed our statistical
cut-off, we cannot be as confident that Lrp also affects the ex-
pression of the other genes of these operons (see supplemental
data, available in on-line version of this article).

Of the remaining newly identified genes of this class, we find
two examples of two genes in the same operon, artP and artI of
the artPIQMJ operon and potH and potG of the potFGHI
operon. artP and artI are involved in arginine transport (32).
The expression of these genes is increased in the lrp� strain
6.3- and 4.6-fold, respectively. The potH and potG genes are
members of the potFGHI operon involved in the transport of
putrescine (33). The expression of these genes is decreased

3-fold in the lrp� strain. In addition to these previously
documented systems, our results suggest that transport sys-
tems involved in the transport of various dipeptides, carbohy-
drates, organic acids, alcohols, and inorganic compounds are
also influenced by Lrp (34–42).

Carbon and Energy Metabolism—Besides its influence on
the transport of organic acids, Lrp also influences the expres-
sion of genes involved in the metabolism of these compounds.
For example, the levels of expression of the structural genes for
malP and manA are both altered in a lrp� strain (43–45). The
remaining genes of this group listed in Table VI are involved
either in the catabolism of glucose under aerobic conditions, or
alternative carbon sources under anaerobic conditions (46–50).

Macromolecular Biosynthesis—8 of the 100 genes listed in
Table VI are involved in macromolecule synthesis. Three of
these genes, hns, hupB, and himD, encode proteins that influ-
ence the structure and DNA topology of the E. coli chromosome.
The remaining five are involved in protein synthesis or degra-
dation. Of these, only one has been previously identified as a

TABLE V
Determination of confidence level for differentially expressed genes with a regularized t test

p value
No. of genes

% Confidence
(ad hoc)

PPDE
(� p)Control vs.

control
Control vs.

experimental

� 0.0001 0 39 	100 0.996
� 0.0005 0.25 62 99.6 0.989
� 0.001 0.5 79 99.4 0.985
� 0.005 2 188 98.9 0.964
� 0.01 3.75 268 98.6 0.947

FIG. 6. Receiver operating characteristic curve. This plot corre-
lates the fraction of correctly identified differentially expressed genes
(y axis) with the fraction of falsely identified differentially expressed
genes (x axis).
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Lrp-regulated gene. This gene, lysU, encodes one of the two
lysyl-tRNA synthetases in E. coli. Gazeau et al. (51, 52) have
reported that this gene is repressed 9-fold by Lrp. Under the
conditions of our experiments, Lrp represses the expression of
the lysU gene 7-fold. Of the four newly identified genes of this
group, two, clpA and pepD, are proteases involved in protein
degradation (53, 54). The remaining two genes, rpmI and rmf,
encode ribosome-associated proteins (55–58).

The hns, hupB, and himD genes are the structural genes for
the H-NS, HU, and IHF proteins that are important for the
condensation of the chromosome into a nucleoid structure, for

restraining negative supercoils, and in several cases for the
regulation of gene expression (3, 59–61). In each case, these
genes are repressed by Lrp. It is likely that the effect of Lrp-
mediated effects on the expression levels of these global regu-
latory gene products might be responsible for many secondary
changes in gene expression levels observed in lrp� strains.

Regulatory Proteins of Stress Responses—The expression lev-
els of several proteins involved in cellular adaptation to nutri-
tional and environmental assaults are increased 2–3-fold in the
lrp� strain. These include the alternative sigma factors rpoS
and rpoE. The rpoS sigma factor, �38, is a central regulator of
many stationary phase-responsive genes. Although it is in-
duced to high levels in early stationary phase cells, it also is
expressed, albeit at a lower level, during the exponential
growth phase, where it functions as a general stress response
element essential for prolonged cell survival (62, 63). It is
involved in the induction of several genes important for os-
motic, oxidative, heat, and DNA damage stress responses (64).
The rpoE gene encodes another sigma element, �24, that also is
expressed at a higher level in the lrp� strain. Although the
major functions of coping with thermal stress are encoded by
genes transcribed by �32, genes transcribed by �24 are neces-
sary for survival under extreme temperature stress conditions
(65). Interestingly, although the expression level of the rpoH
gene for �32 is unaffected in the lrp� strain, several genes
regulated by this sigma factor, such as dnaK, dnaJ, clpA, clpB,

TABLE VI
Functional groups for Lrp-regulated genes

Small molecule biosynthesis and transport
Amino acid biosynthesis

serA �4.41 ilvG�1 2.17 gdhA 2.98 ilvPG::lacZ 2.24
leuB �1.86 ilvG�2 2.04 pheA 3.75 ilvPG::lacY 3.99
proB �1.79 ilvM 3.07 dapA 1.89 ilvPG::lacA 5.53
thrL 3.24 hisG 2.53 asd 1.98

Co-factor biosynthesis
folE 2.26 gst 21.01 grxB 5.68 trxA 3.13

Central intermediary metabolism
gltD �19.27 hdhA 16.49

Transport
livK �3.61 sbp �2.16 artP 6.28 oppA 19.44
livH �3.26 galP �1.78 artI 4.60 oppB 15.12
livG �9.90 dppB �3.01 livJ 2.32 oppC 5.38
livM �2.48 ascF �2.80 glnH 2.22 oppD 7.30
potH �3.27 malE �1.78 bcp 3.63 oppF 3.13
potG �2.03 ftn 5.84

Carbon and energy metabolism
Carbon compound catabolism

malP �2.38 manA 2.75
Energy metabolism

nirB �4.12 glpD �2.77 ppc 1.98 gltA 2.14
Macromolecular biosynthesis

DNA structure and synthesis
hns 2.00 himD 4.09 hupB 2.39

Translation
lysU 6.87 clpA 1.75 pepD 1.93 rpmI 1.82
rmf 25.43

Regulation
Regulatory

rpoS 2.62 rpoE 2.55 rseA 2.42 phoP 2.54
Stress response

sodA �2.35 ahpC 2.09 dnaK 2.13 uspA 3.32
CpxP 3.16

Cell structure
fimA �4.29 ompT �4.26 ompX 2.65 slp 5.67

Hypothetical or unclassified
yhjE �2.98 yccA 2.54 yhbH 2.75 hdeA 3.45
b0703 �2.78 b0667 1.71 yhiX 5.16 hdeB 4.96
yibJ �2.56 ydaA 1.87 yggV 3.08 b1685 7.10
b2253 2.12 yeeX 2.43 ydhD 3.16 ydaR 5.08
b2254 1.83 b2294 2.53 ybeD 3.55 yggB 2.61
yadF 2.20 b2595 2.01 b1839 3.96 yafK 2.98
yajC 2.00

Transposons
rhsB �2.76 insB 6 �2.55 tra5_4 �2.01 trs5_11 �1.77

FIG. 7. Distribution of functions for genes differentially ex-
pressed between lrp� and lrp� Escherichia coli strains.
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clpP. htpG, htpX, gapA, and grpE,3 all exhibit 2–3-fold in-
creased expression levels in the lrp� strain.

The rpoE and rseA genes are both members of rpoE-rseABC
operon, and the resA gene product is a negative regulator of
this operon (66). The remaining genes of this group, phoP,
cpxP, aspC, and uspA, also up-regulated 2–3-fold, are similarly
involved in stress responses. phoP is a regulatory protein in-
volved in a variety of environmental stress signals including
magnesium starvation and nutritional deprivation (67). cpxP
encodes a periplasmic protein important for PH tolerance (68,
69). ahpC and uspA encode proteins involved in the oxidative
stress response (70–73). sodA encodes a superoxide dismutase
also required for survival during oxidative stress conditions
(37, 74). However, the expression of this last gene of this group
is decreased 2.4-fold in a lrp� strain.

Cell Structure—Of the four genes of this group listed in Table
VI, only the fimA gene has been reported to be regulated by
Lrp. The gene product of the fimA gene is the major fimbrial
subunit of type I pili. The expression of this gene is controlled
by a cis-acting DNA element (switch). Several reports have
shown that switching frequency is reduced in IHF and lrp�

strains (75, 76). In agreement with these reports, our data
show that fimA expression is reduced 4.3-fold in a lrp� strain.

The remaining genes of this group, ompT, ompX, and slp, are
outer membrane proteins involved in nutritional or environ-
mental stress responses. The ompT gene encodes an outer
membrane endopeptidase associated with pathogenicity in cer-
tain Gram-negative bacteria (77). Its activity is increased dur-
ing conditions of temperature stress (78). ompX encodes an
outer membrane protein required for �E activity during tem-
perature stress in some E. coli strains (79). Finally, slp encodes
the starvation lipoprotein induced during nutritional depriva-
tion (80).

Examples of Genes Only Expressed in Either Strain IH-
G2490 or Strain IH-G2491—Only those genes exhibiting an
expression level greater than zero in all experiments were used
for statistical analysis as described above. Gene measurements
containing zero expression values were set aside and discussed
here. Among this set of genes, 23 genes with zero expression
values for all measurements of one genotype, and all values
greater than zero for all measurements of another genotype for
each experiment, were identified. The significance of these
results (Table VII) was analyzed by ranking these genes in
ascending order according to their coefficients of variance of the
four greater than zero measurements.

Four of the 23 genes in Table VII are known Lrp-regulated
genes contained in the gltBDF, ilvIH, gcvTHP, and stpA oper-
ons. The genes of the of the gltBDF operon encode a regulatory
protein (gltF) and the two subunits of glutamate synthase (gltB
and D), an enzyme involved in ammonia assimilation. Ernsting
et al. (81, 82) have reported that this enzyme activity is very
low or missing in a lrp� strain. In agreement with this report,
our results show that the mRNA level of gltB is below detection
(Table VII) and gltD mRNA (Table VI) is reduced 19-fold in the
lrp� strain. On the other hand, the mRNA level of the regula-
tory gltF gene is reduced only 1.9-fold (see supplemental data,
available in the on-line version of this article). This result
suggests the presence of an internal, lrp� independent pro-
moter between the gltD structure gene and gltF regulatory
gene of this operon.

Wang et al. (83) have shown that the ilvIH operon that
encodes acetohydroxy acid synthase III of the branched chain
amino acid pathway is repressed 30-fold in a lrp� strain. The
repressed level of transcripts of this operon are undetectable
above background in the experiments reported here (Table
VII). Lin et al. (15, 84, 85) reported that the gcvTHP operon
that encodes proteins that cleave glycine to produce one-carbon
units and ammonia is repressed 20-fold in a lrp� strain. We
find the transcript for one of the genes of this operon (gcvH) is
undetectable (Table VII), and the remaining two genes meas-
ured with p values higher than our statistical cut-off level are

3 Of these genes only the dnaK and clpA genes pass our stringent
statistical test. However, none of the remaining genes in this list pos-
sesses a p value greater than 0.01 (see supplemental data available in
the on-line version of this article).

TABLE VII
Genes differentially expressed between lrp� and lrp� (control vs. experimental) E. coli strains with four measurements below background

obtained from lrp� or lrp� strains
The data are presented as the average (mean) and S.D. of four independent gene expression measurements expressed as a fraction of the total

hybridization signal (total mRNA) on each DNA microarray filter. NA, not available.

Gene namea Control Experimental Control Experimental Coefficient of
variance

mean mean S.D. S.D.

yceB 0.00E-00 3.27E-05 NA 3.05E-06 0.09
gltB* 1.28E-04 0.00E-00 2.37E-05 NA 0.19
msyB 0.00E-00 3.86E-05 NA 9.57E-06 0.25
gcvH* 2.03E-05 0.00E-00 5.43E-06 NA 0.27
osmC 0.00E-00 7.05E-05 NA 3.03E-05 0.43
ilvH* 4.13E-05 0.00E-00 2.11E-05 NA 0.51
yaiB 0.00E-00 2.15E-04 NA 1.09E-04 0.51
yacL 0.00E-00 1.99E-05 NA 1.28E-05 0.64
yljA 0.00E-00 1.30E-04 NA 8.67E-05 0.67
b1720 0.00E-00 1.61E-05 NA 1.17E-05 0.72
fhuF 3.09E-05 0.00E-00 2.69E-05 NA 0.87
ibpA 0.00E-00 3.43E-06 NA 3.20E-06 0.93
fimC 6.07E-05 0.00E-00 5.81E-05 NA 0.96
stpA* 2.15E-05 0.00E-00 2.07E-05 NA 0.96
ribE 0.00E-00 5.63E-06 NA 5.41E-06 0.96
yhiE 0.00E-00 1.40E-05 NA 1.38E-05 0.98
b1431 0.00E-00 5.04E-06 NA 5.32E-06 1.06
b1438 0.00E-00 6.39E-06 NA 7.28E-06 1.14
yedL 4.74E-06 0.00E-00 5.61E-06 NA 1.18
fimB* 0.00E-00 7.76E-06 NA 9.33E-06 1.20
kdtB 1.64E-05 0.00E-00 2.07E-05 NA 1.27
relE 0.00E-00 1.63E-05 NA 2.57E-05 1.58
hisH 0.00E-00 2.57E-05 NA 4.17E-05 1.62

a Known Lrp-regulated genes are identified by an asterisk.
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both repressed (see supplemental data, available in the on-line
version of this article). The transcriptional regulation of the
stpA gene, encoding the E. coli H-NS-like protein StpA, is
regulated by a variety of environmental conditions and several
global transcription factors, including Lrp. Free and Dorman
(87) have shown the transcription of stpA is significantly de-
creased in a lrp� strain growing in minimal medium. Our
results demonstrate that the expression level of the stpA gene
is not detected in a lrp� strain.

Nylon Filter Data Versus Affymetrix GeneChip Data—When
different array formats are used that require different target
preparation methods, the magnitudes and sources of experi-
mental errors are surely different. This raises the question of
whether or not results obtained from experiments performed
with different DNA array formats can be compared with one
another, or indeed even whether comparable results can be
obtained. To address this question, we have assessed the re-
sults obtained from DNA array experiments performed with
pre-synthesized nylon filters hybridized with 33P-labeled cDNA
targets prepared from total RNA with random hexamer prim-
ers and in situ synthesized Affymetrix GeneChips hybridized
with enriched, biotin-labeled, mRNA targets obtained from the
same total RNA preparations.

For the GeneChip experiments, the exact same four control
and experimental pairs of pooled RNA preparations used in the
lrp� versus lrp� nylon filter experiments described above (Fig.
1) were used for hybridization to four pairs of E. coli Affymetrix
GeneChips. However, because of economic considerations, each
experiment was not performed in duplicate; hence, only one
measurement for each gene was obtained on each chip. Thus,
instead of having four measurements for each gene expression
level for each experiment (Fig. 1), only one measurement was
obtained from each GeneChip (Fig. 2). On the other hand, this
single measurement is the average of the difference between
hybridization signals from 
15 perfect match and mismatch
probe pairs.4 Although these are not equivalent to duplicate
measurements because different probes are used, these data
do increase the reliability of each gene expression level
measurement.

Because only one measurement from one GeneChip was ob-
tained for each genotype for each experiment, it was not pos-
sible to distinguish sources of error contributed by differences
among GeneChips and from differences among target prepara-
tions as we have previously reported for the filter data (10).
Nevertheless, it was possible to use the ad hoc control versus
control and PPDE computational methods to compare data
among the four control GeneChips hybridized with independ-
ent biotin-labeled mRNA targets from E. coli strain IH-G2490
(lrp�). These methods were used to estimate the number of
false positives expected at given p value thresholds. These
results for the GeneChip data, as well as the nylon filter data,
are presented in Tables VIII and V, respectively.

It is clear from these results that the filter data identifies
more differentially expressed genes with lower p values and
higher confidence levels than the GeneChip data. This is not
surprising because, as explained above, each gene measure-
ment level in the filter data set is the average of four duplicate
measurements from two separate filters, whereas each gene
measurement in the GeneChip data set is based on a single
measurement from each experiment. In fact, when the top 100
genes with the lowest p values from the nylon filter and Gene-
Chip experiments are compared, only 17 genes are common to
both lists. This lack of correspondence is likely the result of the

greater variance among the GeneChip measurements and the
fact that fundamentally different DNA array formats are com-
pared. However, when a Bayesian statistical framework is
applied to the analysis of each data set, the correspondence is
nearly doubled and 27 genes are found to be common to both
lists. These results further strengthen the conclusions of Long
et al. (12) that statistical analyses performed with a Bayesian
prior identify genes that are up- or down-regulated more reli-
ably than approaches based on a simple t test when only a few
experimental replications are possible.

The GeneChip results described above were obtained from
raw data that were background subtracted and normalized to
the total signal on each DNA array, and analyzed with the
CyberT statistical software. Affymetrix has developed its own
empirical algorithms for the analysis of GeneChip data that are
commercially available in a software package, Microarray
Suite 4.0. Below we compare the identification of differentially
expressed genes identified with the CyberT and Microarray
Suite 4.0 software.

Because the Affymetrix software allows the comparison of
only one GeneChip pair at a time, it was run on each of the four
independent experiments comparing lrp genotypes. Each com-
parison identified between 500 and 700 genes that the Af-
fymetrix software calls as marginally increased or decreased,
or increased or decreased (Table IX). However, filtering the
results from these four independent experiments identified
only 55 genes that the Affymetrix software called differentially
expressed in all four experiments. Remarkably, comparison of
these 55 genes to the 55 genes exhibiting the lowest p values
identified by the CyberT software employing a Bayesian sta-
tistical framework revealed 39 genes in common with both
lists. Among these were 21 known Lrp-regulated genes.

These results illustrate several important points. First, they
stress the importance of replication when only two conditions
are compared. Little can be learned about those genes regu-
lated by Lrp from the analysis of only one experiment with one
GeneChip pair because an average of 600 genes were identified
as differentially expressed, only 55 of which can be reproduced
in four independent experiments. Furthermore, in the absence
of statistical analysis, it is not possible to determine the confi-

4 The number of probe pairs for each ORF and inter-ORF regions
ranges from 3 to 298.

TABLE VIII
Differential gene expression data for Affymetrix GeneChip experiments

using CyberT with a regularized t test
Calculated with 3,515 control and experimental gene expression

measurements (AD values from *.CEL file with negative values con-
verted to 0) containing four non-zero values for four experiments.

p values
No. of genesa

% Confidence
(ad hoc)

PPDE
(� p)Control vs.

control
Control vs.

experimental

� 0.0001 1 21 95.2 0.985
� 0.0005 2.75 32 91.4 0.943
� 0.001 5.5 37 85.1 0.903
� 0.005 19 54 64.8 0.672
� 0.01 31.3 62 49.6 0.527
� 0.05 164 140 0.195

a Calculated by averaging the control or experimental measurements
and comparing experiments 1 and 3 versus 2 and 4 or experiments 1 and
4 versus 2 and 3.

TABLE IX
Number of differentially expressed genes identified by Affymetrix

Microarray Suite software 4.0

No. of replicates No. of differentially expressed genesn

1 416–682
2 118–184
3 68–95
4 55
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dence level and rank the reliability of any differentially ex-
pressed gene measurement identified with the Affymetrix soft-
ware. This is, of course, important for prioritizing genes to be
examined by additional experimental approaches. Finally, and
most importantly, these results demonstrate that remarkably
similar answers can be obtained from fundamentally different
DNA microarray formats when the raw data from each set of
experiments are analyzed by the statistical methods employed
here.

Summary—It is indicative of the power of gene expression
profiling experiments that two thirds of the genes measured
here with a 97% global confidence were previously unknown to
be members of the Lrp regulatory network. Furthermore,
nearly one third of these genes are genes of unknown function.
As more experiments of this type are performed, as more func-
tions are assigned to the gene products of hypothetical ORFs,
and as bioinformatics methods to identify degenerate protein
binding sites typical of proteins that bind to many DNA sites
are developed, an even clearer picture of the Lrp genetic regu-
latory network in E. coli will emerge. However, even at this
early stage in the development and execution of DNA array
technologies and data analysis methods, the results presented
here support previous suggestions that the physiological role of
Lrp is to monitor the nutritional state of the cell to adjust its
metabolism to changing nutritional conditions and, in cooper-
ation with other regulatory networks, to coordinate these
changes with the physical environment of the cell.
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