JMJ-Group – Microbiology – BMB – SDU	
Title: Colony PCR with MyTaq	Date issued: 2012.11.26
SOP number: SOP0021_v01	Review date: 2013.12.03
Version number: 01	Written by: Tina Kronborg

1. Purpose

Colony PCR with My Taq

2. Area of application

This procedure is valid for all *E. coli* strains

3. Apparatus and equipment

Apparatus/equipment	Location (Room number)	Check points	Crite
Heating block	Laboratory (class 1) – V18-404-2	Preheat to 96 °C	
	Laboratory (class 2) – V18-501b-2		
PCR machine	Laboratory (class 1) – V18-403b-2	Check program	Appro
Pipettes (p100,20,10)			
Container for ice			
PCR tube rotator	Laboratory (class 1) – V18-403b-2		

4. Materials and reagents - their shelf life and risk labelling

Name	Components (Concentrations)	Manufacturer/Cat. #	Room
Water	Demineralised milli-Q autoclaved water	Milli-Q water purification	RT
		system (Millipore)	
MyTaq [™] HS Red Mix	http://www.bioline.com/documents/product_inse	Bioline	V18-405a
	rts/MyTaq%E2%84%A2%20HS%20Red%20Mix.pdf#z		
	<u>oom=130</u>		
Reverse primer	Made specific to the template	Sigma-Aldrich	
Forward primer	Made specific to the template	Sigma-Aldrich	
PCR tubes		Eppendorf	Micro sto
1.5 ml tubes		Contact lab-manager	BMB stora
Ice			V18-403a
Green pipette tips		Contact lab-manager	Micro sto
Purple pipette tips		Contact lab-manager	Micro sto

5. QC – Quality Control

For more than 2 samples a premix of primers, MyTaq, primers and water is mixed and aliquoted before adding template

Designing primers:

Generally, the annealing temperature is about 5°C below the lowest melting temperature (T_m) of the pair of primers used, and should be around 55°C so T_m should be around 60°C.

$$T_m = 4(G + C) C + 2(A + T) C$$

Each primer should be about 20-30 nucleotides.

6. List of other SOPs relevant to this SOP

7. Environmental conditions required

When the bacteria samples have been boiled they can be removed from class II and transferred to class I

8. Procedure

- 1. Add 50 µl sterile water to a 1.5 ml tube one for each sample
- 2. Dip a green tips in the colony and transfer it to the eppendorf tube
- 3. Boil at 96 °C for 5 min in a heating block
- 4. Or a colony sample can be transferred into a PCR-tube and with open lid be microwaved for 2 min at max effect
- 5. Place the samples on ice
- 6. Mix primers, water and MyTaq as described under PCR set up; paragraph 12 with the template
- 7. Be sure that all the samples are in the bottom of the PCR tubes by spinning on PCR tube rotator
- 8. Place in PCR machine
- 9. Start the appropriate PCR program for MyTaq or design one yourself, see paragraph 12
- 10. Keep at 4-5 °C until use, if more than 2 days waiting time place in -20°C

9. Waste handling

Chemical name	Concentration	Type of waste (C, Z)	Remarks
Boiled bacteria waste		GMO yellow waste	
Once used plastic		GMO yellow waste	

10. Time consumption

- Total-time 2 hours
- Hands-on-time 1 hour

11. Scheme of development

Date / Initials	Version No.	Description of changes
-----------------	-------------	------------------------

File name: iGEM2013_SOP0021_v01_TK_Colony_PCR_with_MyTaq

12.11.26 / TK	01	The SOP has been written
13.05.22 / TK & MM	01	The SOP has been approved

12. Appendixes

PCR set up, 1 sample:

Notes: Smaller volume than recommended by Bioline

Template: 200 ng Template: 0.5 µl of 50 µl sterile water

boiled with some of the bacteria colony or mix directly into the PCR tube with the microwaved colony

Primers (20 pmol): 0.2 μl each

MyTaq HS Red Mix, 2x: $5 \mu l$ Water (sterile): $4.1 \mu l$ Total: $10 \mu l$

PCR cycling conditions:

Step 1: Initial denaturation: 95 °C 2 min Step 2: Denaturation: 95 °C 15 sec

Step 3: Annealing: 55 °C 15 sec (depending on the primer sequences,

2-5 °C below the lowest Tm of the primers)

Step 4: Extension/Elongation: 72 °C 10-30 sec (30 sec. pr. kilo bp)

Step 5: Repeat step 2-4: 30 times Step 6: Extra elongation: 72 °C 2.5 min

Step 7: Keep the samples cold 4 °C until the samples is removed