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The proportion of Firmicutes and Bacteriodetes are reported to be linked with human obesity. In the
intestines of a man with a bad shape (here it refers to overweight), the ratio of these two bacteria are
generally much higher than that inside a healthy person. It seems that by changing this ratio, usually
reducing it to a lower value, can we fulfill a beautiful dream—losing weight while enjoying eating.

This ratio relationship can be described by a model considering two species compete for two perfectly
substitutable resources since glucose and fatty acid, the most commonly known energy resources, are
just exchangeable in our body.

We assume that resources S(sugar) and R(fat) are perfectly substitutable for both populations
x1(Firmicutes) and x2(Bacteriodetes). Noticing that the real situation is too complicated to be
described (the chemical environment in our intestines is not thoroughly understood and the 100 trillion
of other bacteria make it even worse), we have to abstract these factors as an exploitative competition
in a chemostat. It is at first glance a cursory attempt, but a further look at this idea does make some
sense---at least we can give a result on the ratio, which is the key indicator of obesity.

We assume that the volume of suspension in the culture vessel is one cubic unit and that the culture
vessel is well-stirred. The ODEs are generally:

S(t) and R(t) represent the concentrations of the above-mentioned two nutrients.
xi(t), i = 1,2, denote the biomass of the competing populations of microorganisms in the culture vessel
at time t.
S0and R0 denote the concentrations of resource S and resource R in the feed bottle.
The constant D represents the dilution rate. The specific death rates of the microorganisms are
assumed to be insignificant compared to this dilution rate D.
The function Si(S,R) (respectively, Ri(S,R)) represents the rate of conversion of nutrient S (R) to
biomass of population xi. If the conversion of nutrient to biomass is proportional to the amount of
nutrient consumed, the consumption rate of resource S (R) per unit of competitor xi is denoted
Si(S,R)/ξi (Ri(S,R)/ηi) where ξi(ηi) is the respective growth yield constant.
The function Gi(S,R) represents the rate of conversion of nutrient to biomass of population xi. Since
perfectly substitutable resources are alternate sources of the same essential nutrient, the rate of
conversion of nutrient to biomass of population xi is made up of a contribution from the consumption
of resource S as well as R. Therefore Gi(S,R) = Si(S,R) + Ri(S,R).

It is obvious that there is no particular form of Si and Ri. Experts are working hard only to tell us what
form is reasonable to simulate a competition relationship. Of course, some assumptions are rational
and are used to restrict the form.
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2. It is natural to expect that if the concentration of resource S in the culture vessel is zero, there will
be no consumption or conversion of resource S. A similar statement holds for resource R. Therefore,

3. Assume that the rate of consumption of each resource is a strictly monotone increasing function of
the concentration of that resource.

4. It seems natural to assume that increasing the amount of one resource consumed might result in a
reduction in the amount of the other resource consumed. This is reflected in the assumption that

5. Define

That is, pi(S)/ξi is the function describing the uptake of nutrient S in
the absence of nutrient R.

Let denote the maximal growth rate of population xi
on resource S (R) when none of the other resource is available.

Assume that one of the resources, say S, is superior in the sense that mSi>mRi. It means when both
resources are in relatively short supply, increasing the concentration of either resource is beneficial.
However, once resource S is plentiful enough that mRi, the maximal growth rate of population xi on
resource R when there is no resource S available, would be exceeded by consuming only resource S,
the presence of resource R would actually become detrimental.

The functions Si(S,R) and Ri(S,R) are a generalization of the familiar Michaelis-Menten prototype of
functional response to a single resource. They are given by
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where mSi, mRi, KSi and KRi are positive constants.

And

Now recall that denote the maximal
growth rate of population xi on resource S (R) when none of the other resource is available.

These parameters (mSi\mRi) can be assigned values so as to simulate the ability to utilize glucose and
fatty acid of Firmicutes and Bacteriodetes. If their ability to use nutrient are given as follow:

Firmicutes Bacteriodetes
Glucose +++ (mS1) ++(mS2)
Fatty acid + (mR1) ++(mR2)

Then we can set mS1=2.25\mR1=0.5 and mS2=2.1/mR2=2.1
In order to make ODEs simpler, we set S0=R0=D=1.

Recall that we have ξi(ηi) as the respective growth yield constant.
We do not have to consider each of these four parameters, since a certain ratio of ξi/ηi can provide
enough information and it is this ratio that determines the difference between consuming glucose and
fatty acid. Here we take ξi/ηi=100.

The real situation is that inside our body these two bacteria keep a good balance and in the fat this
ratio is much higher---approximately 8:1. Fortunately, our SYSTEM has a global asymptotic
stationary solution if parameters are set correct. For instance, the following initial value (you can set
random values) provides a good simulator of our bacteria’s ratio.

function dy=myfun(~,y) %y1 to y4 refer to the glucose, fatty acid,
Firmicutes and Bacteriodetes, respectively.
m=[161300,21800];
n=[1613,218];
dy=zeros(4,1);
dy(1)=(1-y(1))-(y(3)/m(1))*(2.25*y(1))/(1+y(1)+y(2))-
(y(4)/m(2))*(2.1*y(1))/(1+y(1)+y(2));
dy(2)=(1-y(2))-(y(3)/n(1))*(0.5*y(2))/(1+y(1)+y(2))-
(y(4)/n(2))*(2.1*y(2))/(1+y(1)+y(2));
dy(3)=y(3)*(-1+(2.25*y(1)+0.5*y(2))/( 1+y(1)+y(2)));
dy(4)=y(4)*(-1+(2.1*y(1)+2.1*y(2))/( 1+y(1)+y(2)));



4

end

[t,y]=ode45(@myfun,[0,800],[1,1,1000,1000]);
plot(t,y(:,3),'.',t,y(:,4),'-')
grid
legend('Firmicutes','Bacteriodetes')

Now it comes the most important part of our modeling. Based on our initial assumption, if we can
change this ratio, mainly reducing it to a lower value, we are able to make this fat person thinner. But
the problem is how to manage it?

We try to add a third bacterium, an E.coli with a certain property, into this system. This ideal type of
E.coli consumes glucose and fatty acid, thus makes itself a competitor to Firmicutes and Bacteriodetes.
While it is reproducing in intestines, the competition among these three types of bacteria makes the
number of them change gradually. At last, we hope to achieve a lower ratio of Firmicutes /
Bacteriodetes.

As you can see, the key point is to find out how competitive our new E.coli is. In other words, we
have to point out its ability to consume glucose and fatty acid---to study new parameters mS3 and mR3.
For example, if mS3>mS1, then we say that our E.coli has a stronger ability to consume glucose than
Firmicutes. We try to find out a good pair of mS3 and mR3.

However, mathematicians have proved that under this model, adding an equation concerning a new
type of bacterium (here refers to x3) will generally destroy the asymptotic stability of the solution. Yet
we find a special case that keeps each of these bacteria alive.
[See Modeling Population Dynamics, André M. De Roos for the proof and the following explanations.]

To see this, we consider several situations:

function dy=myfun(~,y)%y1 to y5 refer to the glucose, fatty acid,
Firmicutes, Bacteriodetes and the new bacteria, respectively.
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m=[161300,21800,10000];
n=[1613,218,100];
dy=zeros(5,1);
a=[*,*];
dy(1)=(1-y(1))-(y(3)/m(1))*(2.25*y(1))/(1+y(1)+y(2))-
(y(4)/m(2))*(2.1*y(1))/(1+y(1)+y(2))-
(y(5)/m(3))*(a(1)*y(1))/(1+y(1)+y(2));
dy(2)=(1-y(2))-(y(3)/n(1))*(0.5*y(2))/(1+y(1)+y(2))-
(y(4)/n(2))*(2.1*y(2))/(1+y(1)+y(2))-
(y(5)/n(3))*(a(2)*y(2))/(1+y(1)+y(2));
dy(3)=y(3)*(-1+(2.25*y(1)+0.5*y(2))/( 1+y(1)+y(2)));
dy(4)=y(4)*(-1+(2.1*y(1)+2.1*y(2))/( 1+y(1)+y(2)));
dy(5)=y(5)*(-1+(a(1)*y(1)+a(2)*y(2))/( 1+y(1)+y(2)));
end

We suppose still ξ3/η3=100

Situation 1 Firmicutes Bacteriodetes E.coli
Glucose +++ (mS1) ++(mS2) ++++(mS3)
Fatty acid + (mR1) ++(mR2) ++(mR3)

a=[2.5,2.1]

[t,y]=ode45(@myfun,[0,100],[1,1,1000,1000,10]);
plot(t,y(:,3),'.',t,y(:,4),'-',t,y(:,5),'.-')
grid
legend('Firmicutes','Bacteriodetes','E.coli')

Situation 1' Firmicutes Bacteriodetes E.coli
Glucose +++ (mS1) ++(mS2) ++(mS3)
Fatty acid + (mR1) ++(mR2) +++(mR3)
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a=[2.1,2.5]
[t,y]=ode45(@myfun,[0,1000],[1,1,1000,1000,10]);
plot(t,y(:,3),'.',t,y(:,4),'-',t,y(:,5),'.-')
grid
legend('Firmicutes','Bacteriodetes','E.coli')

Situation 1 and 1' show that the E.coli are so competitive that others die out.

Situation 2 Firmicutes Bacteriodetes E.coli
Glucose +++ (mS1) ++(mS2) ++(mS3)
Fatty acid + (mR1) ++(mR2) +(mR3)

a=[2.1,0.4]
[t,y]=ode45(@myfun,[0,100],[1,1,1000,1000,1000]);
plot(t,y(:,3),'.',t,y(:,4),'-',t,y(:,5),'.-')
grid
legend('Firmicutes','Bacteriodetes','E.coli')
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The E.coli is too weak to survive.

Situation 3 Firmicutes Bacteriodetes E.coli
Glucose +++ (mS1) ++(mS2) ++(mS3)
Fatty acid + (mR1) ++(mR2) ++(mR3)

a=[2.1,2.11]
[t,y]=ode45(@myfun,[0,1000],[1,1,1000,1000,1000]);
plot(t,y(:,3),'.-',t,y(:,4),'.',t,y(:,5),'-')
grid
legend('Firmicutes','Bacteriodetes','E.coli')
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The E.coli is so competitive that the ratio of Firmicutes to Bacteriodetes increases.

Situation 4 Firmicutes Bacteriodetes E.coli
Glucose +++ (mS1) ++(mS2) +++(mS3)
Fatty acid + (mR1) ++(mR2) +(mR3)

a=[2.25,0.5]
[t,y]=ode45(@myfun,[0,3000],[1,1,1000,1000,10]);
plot(t,y(:,3),'.-',t,y(:,4),'.',t,y(:,5),'-')
grid
legend('Firmicutes','Bacteriodetes','E.coli')

y(3000,3)/y(3000,4)
ans =

4.7920

The ratio of Firmicutes to Bacteriodetes has declined from 8.0 to 4.8, just similar to what we have
expected. So it is mathematically suggested that the E.coli with a consuming ability described in
Situation 4 will properly regulate the gut microbiota and make people slim. This E.coli is just the one
we want --- E.coslim.




