
Transfer function

We were interested in modeling the output of our logic gates based on the 
input. This is called the "Transfer function". 

Imagine this process like a black box that will give you the dynamic 
concentration through time of whatever is downstream of the "AND" when you 
feed it with input data. It doesn't matter if it’s a single input burst or a 
continuous input.

Our logic AND gates are fully dependent on the intracellular concentrations of 
the inducer (sugars for the SweetAND & metal ions for the HeavyMetalAND). 

Then, to accomplish our duty in model, we use the "Transfer Function", for 
which it is necessary to take into account the regulation and dynamics of the 
endogenous B. subtilis intake-efflux system that controls the intracellular 
concentrations of Heavy Metals and Sugars. All this is going to be the "Black 
Box".

So, our first task was to reconstruct the regulatory network of B. subtilis for 
both intake-efflux systems. The regulation data was retrieved from several 
papers and databases like http://bsubcyc.org/

[Heavy metal AND:  Some metals are introduced to the cell by MntH. Those 
metals, in the event of Met 1 being in the cell, are expelled from the cell by a 
transporter of the CadA operon and those of Met2 set by ArsB. The master 
regulators of each set are CzrA and ArsR. They control the production of the 
transporters by repressing them in the absence of metals. Both, CzrA and ArsR 
repress the expression of LasR or P4 and RFP under the hybrid promoter of 
CadA+ArsR.]



[Sweet AND gate:  Arabinose and xylose are imported into the cell by the araE 
permease. The carbon metabolism system is highly regulated in order to 
optimize the consumption of sugars using the least amount of energy. XylR and 
AraR are repressors responsible for the regulation of genes involved in the 
metabolism and intake of xylose and arabinose, respectively.  Although XylR is 
not well characterized, some studies suggest a correlation between XylR and 
the concentration of xylose inside the cell.  AraR not only represses the 
production of genes like araE or araA, but it also represses itself.  AraA and xylA 
are isomerases that convert L-arabinose into L-ribulose and D-xylose into D-
xylulose.  XylR from B.subtilis is also used by our construction as a repressor, 
but the production of xylR is the product of the endogenous production plus the 
production because of a constitutive promoter. Under that constitutive 
promoter, AraC is also produced for the regulation of the hybrid promoter. The 
output of the AND is the production of a transcription factor, LasR or P4 and 
RFP.]

Parameters

We looked for parameters and information of every molecular species in our 
system to be able to construct a hybrid Genetic-Biochemical network. Then, 
based on it, we built a model that could predict the behavior and ask questions 
of the synthetic system coupled to the endogenous system.



Parameters Description Value Source

β transc i
Maximal transcription rate 
of gene i of length j (nt)

j/80  mol/s Bremer, H., Dennis, P. P. (1996) Modulation of chemical 
composition and other parameters of the cell by growth rate. 
Neidhardt, et al. eds. Escherichia coli and Salmonella 
typhimurium: Cellular and Molecular Biology, 2nd ed. chapter 
97a

β¿ i
Maximal translation rate of 
protein i of length j(aa)

j/20  mol/s Bilgin N, Claesens F, Pahverk H, Ehrenberg M. Kinetic 
properties of Escherichia coli ribosomes with altered forms of 
S12. J Mol Biol. 1992 Apr 20 224(4):1011-27

αRNA
Degradation rate of the 
mRNA of specie i. (Equal for 
all species)

 0.003 mol/s  Yang E, van Nimwegen E, Zavolan M, Rajewsky N, Schroeder 
M, Magnasco M, Darnell JE Jr. Decay rates of human mRNAs: 
correlation with functional characteristics and sequence 
attributes. Genome Res. 2003 Aug13(8):1863-72. 
doi:10.1101/gr.1272403 p.1864 left column 2nd paragraph

α Degradation rate of  
proteins  (equal for all, from 
GFP half life)

 1.38e-4,
0.0023

 - Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC, 
Kain SR. Generation of destabilized green fluorescent protein 
as a transcription reporter. J Biol Chem. 1998 Dec 25 
273(52):34970-5.
-Megerle, J. 2011.

V maxCzrA
 Vmax of production of Czra  70 mol/s  Inference from [9]

KmCzrA
 Km for CzrA production 40 mM Inference from  [9]

cat met∈¿
K ¿

Maximum number of 
imported metal molecules 
per transporter

  600 mol/s  Assumption 

mmet ∈¿
K ¿

 Km for import of metals   Assumption

K cat met1out
 Maximum number of 
exported metal molecules 
per transporter

 

cat met∈¿
¿K ¿

 Assumption

Kmmet 1out
 Km for export process by 
any CadA transporter  

mmet∈¿
¿K ¿

 Assumption

K cat met2out
 Maximum number of 
exported metal molecules 
per transporter

 

cat met∈¿
¿ K ¿

 Assumption

Kmmet 2out
 Km for export process by 
ArsB transporter  

mmet∈¿
¿K ¿

 Assumption

Ka ArsR
 Afinity constant to its 
bindinding site

 330 nM  Groningen 2009

Kaarabinose
Afinity constant of 
arabinose to AraR and AraC 

AraR= 8.4 µM
AraC=50µM

Procházková, 2012
Mergele J, 2011

Ka xylose
 Afinity to XylR  of xylose  8.4 µM  Assumption (equal to arabinose Ka)

http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Proch&aacute;zkov&aacute;,%20K.


Kamet 1
 Ka of Me1 for CzrA  6 µM  Groningen 2009

KaCzrA
 Afinity to  CadA promoter  330 nM  Assumption (equal to ArsR)

K cat AraE
Kcat for transport of sugar 
into the cell.

1000 mol/minMegerle, J. 2011

Km AraE
Km for transport of sugar 
into the cell.

 50µM  Assumption from Megerle, J. 2005

K cat AraA
Kcat for conversion of L-
Arabinose into L-ribulose

1943/min Sabio DB ID:39773 PUBMED: 20688514

Km AraA
Km for conversion of L-
Arabinose into L-ribulose

31.9 mM Sabio DB ID:39773 PUBMED: 20688514

K cat XylA
Kcat for conversion of D-
xylose into D-xylulose

1943/min Assumption (equal to AraA)

Km XylA
Km for conversion of D-
xylose into D-xylulose

31.9 mM Assumption (equal to AraA)

Justification of formalisms

In our project, we use different mathematical formalisms to achieve a superior 
model. According to our own experience, a simple ODE model is difficult to 
calibrate if the expected behaviors are not known. Due to the underlying 
assumption of absolute interaction capabilities, it is easy to ignore important 
concurrent delays under a simplistic mass-action dynamic. For logic gates, 
achieving correct time-scales is crucial. Thus, we refine ODE behaviors using a 
reductionist approach: rule based modeling. Through the use of Kappa, we are 
able to accurately predict behaviors and thus refine our ODE model. For 
example, a diffusion limit through membrane channels can be implemented 
through the use of a Michaelis-Menten dynamic, something that unless we 
knew was required, would have been very difficult to foresee. Moreover, a 
reductionist approach evidentiates the mechanistic understanding required to 
achieve a believable model. For an iGEM project, reductionist understanding of 
the project is a tremendous advantage when characterizing standardized parts.

However, rule-based models are difficult to scale, not to mention that they are 
computationally very expensive, and therefore a compact ODE system is still 
preferable for large-scale simulations and iterations. Consequently, we utilize 
rule-based models to refine an ODE approximation, with which we can further 
scan parameters and explore the solution space. In other words, we use 
different formalisms to take maximum advantage of their respective strengths, 
avoid their weaknesses, and thus achieve a superior model.

http://www.ncbi.nlm.nih.gov/pubmed/20688514
http://www.ncbi.nlm.nih.gov/pubmed/20688514


Stochastic and deterministic models

Sometimes people wonder why we used Kappa, a stochastic approach, to 
model our system, which was also described by deterministic differential 
equations. First of all, Kappa helped us come up with the concentration ranges 
entered in the differential equations (here, an exclamation of awe is usually 
heard). How did this come to happen? Well, the simulation in kappa is driven by 
the binding events and is dependent of the species concentrations, so using 
general kinetic rates we are able to see the dynamic behavior given by the 
architecture of the network. This allowed us to approximate the final species 
concentration and look for parameters missing in our ODE system, which is 
something useful, since we were as lost as a three-legged dog in a rodeo 
dance.

Sweet AND !!

We ran the and_sugar.ka kappa script shifting the sugar initial concentrations in 
the single input burst and getting the average of 100 iterations to eliminate the 
noise in the simulation. After running some simulation time, we were happy to 
see that our "Sweet AND" behaved as expected, as an AND! Besides, we were 
able to see the maximal concentration of the protein that would be 
downstream of our AND, and the time it took to reach it. As you can see, our 
simulation grid is not described in its entirety. This is because of the high kappa 
simulation time consumption, so we chose to feed our ODE system with some 
parameters and scan the system in a broader manner instead of dying of old 
age waiting for Kappa. Nevertheless, some behaviors can be noticed only 
looking at the simulation grid, for example, the activation of P4, depending on 
the xylose and arabinose concentrations. As it becomes apparent through a 
meticulous and insightful analysis only doable by a really smart, handsome, 
and admirable person, the activation of P4 depends on the concentrations of 
both, xylose and arabinose. When only one of the two sugars has a high 
concentration, the activation is not as elevated as when the two have high 
concentrations.

//grid de hector//

This plot describes the time to reach steady state and maximal concentration 
of the AND downstream protein. It also describes what the maximal 
concentration of the AND protein is. All of it is based on a single input burst 
concentration.



Then, with the ODE system ready to rock in matlab, we scanned for different 
combinations of sugar concentrations. Even though we looked at a slightly 
different contribution of the inputs (xylose has a stronger activation effect over 
the Sweet AND system), meaning that our system had a different behavior 
when looking at the endogenous system in B. subtilis than just looking at our 
synthetic construction, our system still worked as an AND. This is reflected by 
the bi-dimentional data analysis. Nevertheless, this is not true for the heavy 
metal AND.



There came a time where we put together our wits to analyze the three 
dimensional plot. It was at this time that we found out that some of us were not 
as brilliant as we thought, but that is a tale for another moment, right now we'll 
just tell the tale of our observations and conclusions.

Our first observation worthy of mention came when we realized that the 
system was most repressed when there was scarce xylose in the system, not 
when there was none. On the contrary, when there is no xylose in the system, 
there is a very small expression gradient dependent on the concentration of 
arabinose, yet this gradient does not surpass a threshold where we could 
consider the AND as "ON".



We are coupling an endogenous and an exogenous repressor to our AND. This 
approach can easily be explained by the fact that we are expressing the 
endogenous repressor XylR in a constitutive manner. This is due to the fact that 
it has been reported that it has to be in high concentrations in order to repress 
in an effective manner. When we add xylose to the medium, endogenous XylR 
gene increases its expression, (as a super saiyan increases its ki). This makes 
repression against the AND increase when xylose is found in the medium in 
small amounts. After the repression threshold is surpassed, xylose stops being 
a repressor and shifts to being an activator, so that an increase in its 
concentration augments the AND's downstream protein expression.

Metal AND

Metal homeostasis in the cell involves an effective response in order to 
withstand possible stress conditions in which high concentrations of heavy 
metals are involved. Both approaches, ODEs with Matlab and the stochastic 
one with kappa, give us similar results. First, we were able to see that the AND 
response is not as sensitive to higher concentrations. For the AND to have a 
good performance, low concentrations of Met 1 and 2 are required. As we said, 
we infer that metal response is a fast process.  The accumulation of the output 
protein shows a sudden increase in production resulting from a very small 
change in metal concentrations.  Another remarkable fact is about the role 
each TF (CzrA and ArsR) has. Since ArsR represses itself, its production has a 
succession of spikes. Nevertheless, CzrA increases its production if the metal 
concentration within the cell also increases, but it doesn´t have a drop in 
production because their decay depends only on the dilution and degradation 
of the protein. That way, the effects of CzrA are more notable than ArsR. This is 



reflected in a greater contribution of Met1 in the regulation of the AND 
promoter than that of Met2. 

OR 

Assuming that both transcription factors had the same affinity, both the 
stochastic and the deterministic approach show us that its behavior is not 
dislike an Or gate. 







Effects of the metabolite’s nature



The inputs used by each AND have a unique effect in the response of the cell, 
because carbohydrates are degraded by the cell. In contrast, metals just reach 
an equilibrium and not-toxic concentration within the cell through exporting it 
outside the cell, maintaining the concentration constant.  

When we add sugars to the sweet AND system, if it is added just like a discrete 
and unique dose of it, the cell with react to the alteration through the activation 
of degradation machinery, but when the sugar pool is empty, the cell will 
achieve a similar state to the one before the sugar input. When the sugar 
addition is constant, the cell has a complete phenotype change, reaching a new 
steady state.  

When we look at the behavior of the metals AND, we find that it is similar to 
the one reached by a constant dose of arabinose,  because the metals levels in 
just one dose will be constant since metals can´t be degraded.



Conclusions

After making the model just for our AND, me coupled the endogenous Bacillus 
subtilis system to our predictions. After this, we found out that the predictions 
given by both assumptions were not the same, proving that the endogenous 
system was, in fact, an important matter to consider, so we considered it. 
Obviously, as the model that did not take into account the endogenous system 
was farther away from the actual system, we opted for using the model that 
did take it into account, making our transfer function a more realistic 



representation of the system, in spite of the fact that we could not find all the 
parameters. 

Some of these parameters, unfortunately, were the diffusion within the 
nanotubes, and the amount, size, form, frequency of creation, or any other 
useful data of nanotubes you could think of (luckily for us, we could not think of 
that many). Even though we had to face all these problems, with the little light 
shone by people before us onto the spectral essence of the nanotubes, it was 
possible for us to say that our system can, in theory, simulate Boolean 
operations.

References

1. Rust, L.; E.C. Pcsi, B.H. Iglewski. Analysis of the Pseudomonas aeruginosa 
elastase (lasB) regulatory region.J. Bacteriol. February 1996 vol. 178 no. 
4 1134-1140.

2. Lyons T, David J E. Transport and storage of metal ions in Biology. Chapter V. 
"http://www.ffame.org/pubs/Transport%20and%20Storage%20of%20Metal
%20Ions%20in%20Biology.pdf ".

3. Fujita M, Tanaka K, Takahashi H, Amemura A.  Transciption of hte principal 
sigma-factor genes, rpoD and rpoS, in Pseudomonas aeruginosa is controlled 
according to the growth phase. Mol Microbiology. 1994 Sep;13 (6):1071-7

4. Laval Université. Chapitre 2 Régulation transcriptionnelle chez Pseudomonas 
aeruginosa. Collection Mémoires et théses électroniques.  
"http://archimede.bibl.ulaval.ca/archimede/fichiers/24237/ch02.html ".

5. Kreuzer P, G rtner D, Allmansberger R, Hillen W. Identification and sequence 
analysis of the Bacillus subtilis W23 xylR gene and xyl operator.J 
Bacteriol. 1989 Jul ; 171(7): 3840-5

6. Kreuzer P, Gärtner D, Allmansberger R, Hillen W. Identification and sequence 
analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J Bacteriol. 
1989 Jul;171(7):3840-5. 

7. Buchler N, Gerland U, Hwa T. On schemes of combinatorial transcription 
logic. PNAS April 29, 2003 vol. 100no. 9 5136-5141  DOI:10.1073

8. Bhavsar A, Zhao X, Brown E. Development and characterization of a xylose-
dependent systme for expression of cloned genes in Bacillus subtilis: 
Conditional complementation of a Teichoic acid mutant. Appl Environ 
Microbiol. 2001 January; 67(1): 403–410. doi:  10.1128/AEM.67.1.403-410.2001



9. Moore C, Gablla A, Hui M, Ye R W, Helmann J D. Genetic and physiological 
responses of Bacillus subtillis to metal ion stress. Molecular Microbiology. July 
2005 Vol 57(1): 27–40.

10. Fujita M, Gonzáles-Pastor J E, Losick R. High- and low-threshold genes in the 
Spo0A regulon of Bacillus subtilis. J. Bacteriol. February 2005 vol. 187 no. 
4 1357-1368. DOI: 10.1128/JB.187.4.1357-1368.2005.

11. Klaus A, Hueck C, Hillen W. Catabolite repression of the Bacillus subtilis xyl 
operon involves a cis element functional in the context of a unrelated 
sequence, and glucose exerts additional xylR-dependent repression. J 
Bacteriol. 1994 March; 176(6): 1738–1745. PMCID: PMC205262 

12. Jarmer H, Larsen T S, et al. Sigma A recognition sites in the Bacillus subtilis 
genome. Microbiology. September 2001. Vol 147(9):2417-2424. 

13. Helmann J D. Sigma factors in gene expression. Nature. 2001. Encyclopedia 
of life sciences.

14. Gärtner D, Geissendörfer, Hillen W. Expression of the Bacillus subtilis xyl 
operon is repressed at the level of transcription and is induced by xylose. J 
Bacteriol. 1988. 170(7):3102-3109.

15. Bintu L, Buchler N, Garcia H G, Gerland U, Hwa T. Transcriptional regulation 
by the numbers: Models.  Genetics & Development. Opinion.  2005. 15(2):116-
124.DOI:10.1016

16. Goryachev A B, Toh D J, Lee J. System analysis of a quorum sensing 
network: Design constraints imposed by the functional requirements, network 
topology and kinetic constraints. BioSystems. 2006. 83:178-187.

17. Procházková K, Cermáková K, Pachl P, et al. Structure of the effector-
binding domain of the arabinose repressor AraR from Bacillus subtilis.

18. Megerle, Judith. Cell to cell variability of gene expression dynamics in 
inducible regulatory networks. Dissertation of Physics Faculty of  Ludwig 
Maximilians University of Munich. January 2011.

19. Krispin O, Allmansberger R. The Bacillus  subtilis AraE protein displays a 
broad substrate specificity for several different sugars. J Bacteriol. 1998 
June; 180(12): 3250–3252. PMCID: PMC107832.

20. Gu Y, Ren C, Sun Z, Rodionov D A, Zhang W, Yang S, Yang C, Jiang W. 
Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC 
Genomics 2010, 11:255 doi:10.1186/1471-2164-11-25.

21. Moore C, Helmann J D. Metal ion homeostasis in Bacillus subtilis. 
Microbiology. April 2005. 8(2):188-195 DOI: 10.1016/j.mib.2005.02.007



22.  Sá-Nogueira I, Nogueira T V, Soares S, Lencastre H. The Bacillus subtilis L-
arabinose (ara) operon: nucleotide sequence, genetic organization and 
expression. Microbiology. 1997. 143:957-969.

23. Chakravorty D, Wang B, Won Lee C, Giedroc D P, Merz K M. Simulations of 
allosteric motions in the zinc sensor CzrA. J. Am. Chem. Soc. 2012, 
134(7):3367-3376.

24. Buchler et al. On schemes of combinatorial transcription logic. PNAS. 
doi10.1073.


