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Abstract

We shall investigate resolution within microscopy. The light produce received from a microscope
had been approximated with the Debye integral modelling the distribution of light around the
focus of a well-corrected lens. From this, computational simulations were performed to investigate
the resolution. Resolution specifically regarding (single-photon)confocal and two-photon confocal
microscopy was investigated to find that confocal generally has better resolution than the two-
photon microscope in both the lateral and optical directions. The resolution of different coloured
tags was explored to find that enhanced green fluorescent protein (EGFP) gives greater resolution
than red fluorescent (DsRed) protein tag.
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1 Introduction

The specific types of microscopes that we shall investigate are the confocal and two-photon confocal mi-
croscopes. With their ability to section into live biologicals, these microscopes play a significant role in

science with their role in imaging the interaction between small molecules within cells[1][2][3]. A notable

example of this is in the experimental imaging of protein-protein interactions[4]. The identification of
these protein-protein interactions is anticipated to ‘potentially revolutionise our view of biological and

disease pathologies’[5].

Figure 1: Apparatus set up of a confocal microscope[6]. A two-photon confocal microscope would have
two light pulses as the light sources whereas a typical confocal microscope would have a single light
pulse a the light source. Note that the detector is behind a pinhole, i.e. a small aperture. Only the light
focused onto the specimen, i.e. object to be imaged, can be detected through the aperture.

Confocal, with respect to microscopes, refers to the illumination of an object, where in this case, it is
confined to a diffraction-limited spot in the object and the detector is similarly confined by an aperture

placed at the focus[1], as in Figure 1. This aperture allows for only focused light to reach the detector,

this allowing the microscope to perform optical sectioning[7]. This means that the microscope can scan
flat 2D section multiple times to create a three-dimensional image of an object.

We shall investigate the physical ability of the confocal and two-photon confocal microscope by
calculating its limits under normal operation. Thus, the limitation would be the ability to resolve two
points that must pass through a small aperture, at the thus we wish to investigate the behaviour of
light around the aperture. Since the light has been focused, we wish to look at the distribution of light
near the focus of a lens. Such a light distribution as the one to be derived would not be easily done, if
possible, experimentally as we have not considered the inhomogeneities in the object, aberrations, noise
and other nonlinearities. We shall assume that the optics is linear such that all light sent to illuminate
the object is detected. It would be expected however, that any experimental variations would b=not be
that significant compared to the nature of light. The following derivation can be thought of as the best
resolution we could ever have if everything worked ‘perfectly’.
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2 Light at the focus

We wish to find the distribution of light near the focus. Note that confocal microscopy allows for optical
section, so our light distribution shall be in the plane of the object as well as in the optical direction.

This derivation was motivated by Diaspro[8], supported by Born and Wolf[9].

Figure 2: Diagram for derivation[9]. A spherical wavefront at the aperture plane is converging towards
the focus at O.

Consider a monochromatic spherical wave at the aperture plane in Figure 2 and converging towards
focal point O. Consider a disturbance in the field U(P ) at a point P in the neighbourhood of O. Point
P is in direction and magnitude of R from O. We shall assume that R and a the size of the aperture
are small compared to f the radius of the spherical wave that momentarily fills the aperture.

Take point Q to be a point on W the wavefront with q the unit vector from O to Q. Let the distance
between P and Q be s. Define A

f to be the amplitude of the wave at Q. Note that A is arbitrary. We
can see that

s− f = −q ·R =⇒ s = f − q ·R. (1)

From the Huygens-Fresnel Principle[9], we must then have

U(P ) = − i
λ

A exp (−ikf)

f

∫∫
exp (iks)

s
dW

assuming the variation of W over the wavefront is negligible.
We can see that our wavefront, equivalent to the arc of a sector, is spanned by an angle Ω such that

W = f2Ω

which implies that a dW a small section of the wavefront is given by

dW = f2dΩ (2)
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where dΩ is an element of solid angle that dW subtends at O. Hence

U(P ) = − i
λ
A

exp (−ikf)

f

∫∫
W

exp (iks)

s
dW

= − i
λ
A

exp (−kf)

f

∫∫
W

exp (ikf) · exp (−ikq ·R)

f − q ·R
dW from Eq. 1

= − i
λ
A

exp (−ikf)

f

∫∫
W

exp (ikf) · exp (−ikq ·R)

f − q ·R
f2dΩ from Eq. 2

= − i
λ
A

exp (−ikf)

f

∫∫
W

exp (ikf) · exp (−ikq ·R)

f
f2dΩ since f − q ·R ≈ f

= − i
λ
A

exp (−ikf + ikf)

f2

∫∫
W

exp (−ikq ·R) f2dΩ.

= − i
λ
A

∫∫
W

exp (−ikq ·R) dΩ (3)

Note that this integral runs over all angle Ω where the wavefront W subtends at the focus.
We shall refer to Equation 3 as the Debye integral. We wish to evaluate this integral to calculate the

intensity of light near the focus of a lens. So let’s define a set of rectangular coordinates centred on O
as specified in Figure 2. Define distances r and aρ such that P is distance r from O and Q is distance
aρ from O. Set coordinates of P (x, y, z) and Q(ξ, η, ζ) such that

x = r sinψ ξ = aρ sin θ

y = r cosψ η = aρ cos θ

z = z

where ρ is a factor of Q along plane of aperture.
To find ξ, we know that Q lies on the spherical wavefront W

=⇒ ξ = −
√
f2 − a2ρ2

= −f
(

1− a2ρ2

f2

) 1
2

≈ −f
(

1− a2ρ2

2f2

)
Now, we have q = 1

f (ξ, η, ζ) and R = (x, y, z), so we can then find

q ·R =
1

f
(ξx+ ηy + ζz)

=
1

f

(
aρ sin θ · r sinψ + aρ cos θ · r cosψ − fz

(
1− a2ρ2

2f2

))
=

ar

f
ρcos(θ − ψ)− z

(
1− a2ρ2

2f2

)
. (4)

Let’s define a set of cylindrical axes about the z-axis. Define dimensionless variables u and v such
that u is a unit vector in the z-direction, call this the optical direction and v is a unit vector in the r
direction, call this the lateral distance.

u =
2π

λ

(
a

f

)2

z v =
2π

λ

(
a

f

)
r =

2π

λ

a

f

√
x2 + y2. (5)

Note that there is an implicit assumption here. We have assume that we have rotational symmetry, i.e.
symmetry about the optical axis.
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So we can now express Equation 4 in terms of our new cylindrical coordinates u and v (and angular
component).

q ·R =
λ

2π

(
2π

λ

ar

f

)
ρcos(θ − ψ)− λ

2π

(
2π

λ

a2

f2
z

)(
f2

a2
− 1

2
ρ2

)
=

λ

2π
· vρ cos(θ − ψ)− λ

2π
u

((
f

a

)2

− 1

2
ρ2

)

=
λ

2π

(
vρ cos(θ − ψ)−

(
f

a

)2

u+
1

2
uρ2

)

=⇒ kq ·R = vρ cos(θ − ψ)−
(
f

a

)2

u+
1

2
uρ2. (6)

Now, once again, for our wavefront, as is Equation 2, we must have

W = Ωf2 =⇒ dW = f2dΩ. (7)

Looking at the projection of our aperture plane, we wish to change our Cartesian coordinates for W of
(ξ, η) to our new cylindrical (well, two dimensions of it) coordinates of (ρ, θ). First, we need to find the
Jacobian (not as straightforward as previously).

Jacobian =

∣∣∣∣∣det

(
∂ξ
∂ρ

∂ξ
∂θ

∂η
∂ρ

∂η
∂θ

)∣∣∣∣∣ =

∣∣∣∣det

(
a sin θ aρ cos θ
a cos θ −aρ sin θ

)∣∣∣∣
=

∣∣−a2ρ sin2 θ − a2ρ cos2 θ
∣∣

= a2ρ
(
sin2 θ + cos2 θ

)
= a2ρ.

Then back to Equation 7, we must then have

dW = a2ρdρdθ

=⇒ f2dΩ = a2dρdΩ

=⇒ dΩ =
a2dρdθ

f2
(8)

So with Equations 6 and 8, the Debye integral characterising the field near the focus, of Equation 3
becomes

U(u, v) = − i
λ
A

∫∫
Ω

exp

(
−i

(
vρ cos(θ − ψ)−

(
f

a

)2

u+
1

2
uρ2

))
a2ρ

f2
dρdθ.

To determine the bounds of integration, note that ρ was a proportion of W and W was across the whole
plane. We want our integral to cover the whole lateral plane of our plane of aperture, so we shall take
all values of θ. Thus,

U(u, v) = − i
λ

a2A

f2

1∫
0

2π∫
0

exp

(
−i

(
vρ cos(θ − ψ)−

(
f

a

)2

u+
1

2
uρ2

))
ρdθdρ

= − i
λ

a2A

f2
exp

(
i

(
f

a

)2

u

) 1∫
0

2π∫
0

exp

(
−i
(
vρ cos(θ − ψ) +

1

2
uρ2

))
ρdθdρ

= − i
λ

a2A

f2
exp

(
i

(
f

a

)2

u

) 1∫
0

2π∫
0

exp (−ivρ cos(θ − ψ)) · exp

(
1

2
uρ2

)
ρdθdρ
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Now, this is a foul integral. Note that the integral expression for Bessel functions Jn(z) is[10]

i−n

2π

2π∫
0

exp (ix cosα) · exp (inα) dα = Jn(x).

Thus

J0(x) =
10

2π

2π∫
0

exp (ix cosα) exp (0) dα

=
1

2π

2π∫
0

exp (ix cos(θ − ψ)) d(θ − ψ)

=
1

2π

2π∫
0

exp (ix cos(θ − ψ)) dθ

=⇒
2π∫
0

exp (−vρ cos(θ − ψ)) dθ = 2πJ0(vρ).

So back to Equation 9, we have

U(u, v) = − i
λ

a2A

f2
exp

(
i

(
f

a

)2

u

) 1∫
0

2πJ0(vρ) exp

(
−1

2
iuρ2

)
ρdρ

= −2πia2A

λf2
exp

(
i

(
f

a

)2

u

) 1∫
0

J0(vρ) exp

(
−1

2
iuρ2

)
ρdρ (9)

So Equation 9 gives us the distribution of the field at Point P of a monochromatic spherical wave near
the focus of a lens. This can represent the focusing of light from a laser onto an object to be imaged
with a confocal microscope.

However, we do not observe the amplitude of a field. Instead, we observe the intensity, which is the
mod square of the amplitude. We can define a value to give us this intensity, call this value the point
source function. Define the point source function to be

point source function = |U(u, v)|2 = U(u, v)†U(u, v). (10)

Our point source function gives us the distribution of light in the optical and lateral dimensions. In
an experimental biology sense, this would represent the absorption pattern of a uniform fluorophore
solution in the neighbourhood of the focus, in the space domain.

Now, for the confocal microscope, we have pointwise illumination and detection, so both the illumi-
nation and detection of photons are at the focus of a lens. So we can model the distribution of light
intensity around the point of illumination and detection with our point source functions for illumination
and detection respectively.

We can think of the (normalised) point source function as a probability function. Each point has
a probability of being illuminated and, independently, every illuminated point has a chance of being
detected. So we can define our point source function for the image from a confocal microscope as the
product of these point source function as in Equation 11

|Uconfocal|2 = |Udet|2 |Uill|2 (11)

For the two-photon confocal microscope, we still have pointwise illumination and detection. Each
photon for illumination and detection still obeys the point source function. However, we now have
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illumination from two photon, who then combine to give off the one photon for detection. So the
image from a two-photon microscope is proportional to the product of the probability of two photons
independently illuminating the object and the probability that a photo is detected. Thus we have the
point source function for a two-photon confocal microscope defined as in Equation 12.

|U2-photon|2 =
(
|Udet|2

)2

|Uill|2 (12)

3 Simulations

We now have an expression for the intensity of light at the focus of a lens. We wish to see how this
behaves in a physically realistic situation. We shall plot the intensity patterns of light for varying
wavelengths to produce the final image. These simulations were performed with MATLAB, see section
A.

We shall test the resolution for different wavelengths. Biologicals are usually tagged with more

than one colour, which allows the observer to see more than one object[11]. This would be particularly
useful for looking at more than one entity, such as protein-protein interactions where we wish to see two
separate proteins within the one specimen.

We have chosen two fluorescent tags that are commonly used in labs, enhanced green fluorescent
protein (EGFP) and (DsRed). These have the corresponding wavelengths as in Table 1. For confocal
microscopy, we have a laser illuminating our object. Light from the object is then detected. Note that
the illumination and detection wavelengths are different.

Table 1: Wavelengths corresponding to protein tags[11]

Protein IlluminationConfocal (nm) Illumination2-photon (nm) Detection (nm)
EGFP 488 900 520
DsRed 568 1064 645

Confocal imaging with EGFP is shown in Figure 3. Note that the plot is proportional to the intensity
or probability of the light imaged. The confocal microscope image with EGFP is produced from the
illumination of the object at 488 nm, Figure 3a, then detection at 520 nm 3b. The observed image is
taken to be the product of the illuminated and detected distributions as given in Figure 3c.

(a) Illuminating EGFP at 488nm (b) Detecting EGFP at 520nm (c) Observed itensity of EGFP

Figure 3: Intensity distributions for confocal microscope for enhanced green fluorescent protein (EGFP).
Red indicates highest intensity with blue the lowest intensity.

Confocal imaging with DsRed is shown in Figure 4. The confocal microscope image with DsRed
is produced from the illumination of the object at 568 nm, Figure 4a, then detection at 645 nm 4b.
The observed image is taken to be the product of the illuminated and detected distributions as given in
Figure 4c.

Two-photon confocal imaging with EGFP is shown in Figure 5. The two-photon confocal microscope
image with EGFP is produced from the illumination of the object at 900 nm, Figure 5a, then detection at
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(a) Illuminating DsRed at 568nm (b) Detecting DsRed at 645nm (c) Observed itensity of DsRed

Figure 4: Intensity distributions for confocal microscope for DsRed. Red indicates highest intensity with
blue the lowest intensity.

520 nm 5b. The observed image is taken to be the product of the illuminated and detected distributions
as given in Figure 5c.

(a) Illuminating EGFP at 900nm (b) Detecting EGFP at 520nm (c) Observed itensity of EGFP

Figure 5: Intensity distributions for two-photon confocal microscope for enhanced green fluorescent
protein (EGFP). Red indicates highest intensity with blue the lowest intensity.

Two-photon confocal imaging with DsRed is shown in Figure 6. The two-photon confocal microscope
image with EGFP is produced from the illumination of the object at 1064 nm, Figure 6a, then detection
at 645 nm 6b. The observed image is taken to be the product of the illuminated and detected distributions
as given in Figure 6c.

(a) Illuminating DsRed at 1064nm (b) Detecting DsRed at 645nm (c) Observed itensity of EGFP

Figure 6: Intensity distributions for two-photon confocal microscope for DsRed. Red indicates highest
intensity with blue the lowest intensity.

Note that the plots are symmetric about the r = 0 axis, as we would expect as we have assumed
this. This means that on the plane of the image, we expect to see a somewhat circular pattern. Note
also that there are nonzero intensities above and below z = 0. This implies that we can look below the
surface of the object. This would be practical if we were to look at a function inside a cell, without
opening the cell.
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4 Resolution

For the purposes of comparing resolution in this report, we shall consider the full-width half-maximum
(FWHM) value. As this sounds, this is the width of the peak at half of its maximum value. So for all
observed lights, we shall calculate the FWHM value with MATLAB, Section A, with results recorded in
Table 2.

There is speculation that confocal microscopes can focus to smaller than optical wavelengths[12][13].
This would be justified from our simulations, provided that it was performed very well experimentally.
Note that we have assumed independence, otherwise referred to as incoherence, in our handling of the
point source functions of light. Our light source is a monochromatic laser, so we would expect some
coherence. This the interaction of the phase of the light could be included in further calculations. Note
that it would be unlike for light, illuminated with detected, to be completely coherent, so we would

expect partially coherent light. This could also result in a different handing of resolution[14][15][16].

Table 2: Full-width half-maximum of observed intensities

Protein Lateral (µm) Optical (µm)
Confocal EGFP 0.18 0.11

Two-photon EGFP 0.21 0.12
Confocal DsRed 0.22 0.13

Two-photon DsRed 0.25 0.15

Note that we have found that confocal microscopes give greater resolution compared to the two-

photon microscope, yet two-photon microscopy is still common[17]. Note that the illuminating light is
of greater (almost twice the) wavelength of the single-photon confocal microscope. This means that the
object, usually a live biological sample, would have light of lower energy illuminating it, thus reducing

the issue of killing the sample with the light [2][18], yet still retain the optical section ability characteristic
of confocal microscopy.

We can see that in general the confocal microscope has a smaller FWHM value,which indicates that
each spot from the confocal is smaller than that of the two-photon confocal microscope in both the
optical and lateral directions. This implies that the confocal can image an object to greater lateral
resolution, but also to greater depth resolution than a two-photon confocal microscope.

The FWHM value is only one method of measuring resolution. Another common method is the

Rayleigh criteria [19] where we would consider the distance between the first diffraction minimum and
the central maximum as being the resolution of the optical signal.

Note that although there FWHM might be in the order of hundreds of nanometres, there are methods,
based on biological experience, to further infer information from images. Due to the pointlike collection
of images, the confocal microscope is a scanning microscope. This means that there must a time-lag
between the collection of each point. When looking at two small objects simultaneously, methods such

as fluorescence correlation spectroscopy[20][21] take advantage of this by looking at the location of two
entities over time to judge the interaction or just the biological localisation nature of proteins. Note that
there is a distinction between localisation and resolution in physics, however this is not relevant in this
discussion, but could be explored in a more rigorous exploration.

Despite an improvement in resolution, two-photon microscopes are still used in laboratories. We
need to further our investigation into other aspects of microscopy before a decision to favour a particular
microscope is used, even when comparing single and two-photon confocal microscopes. There may be
some preferences in using light with a longer wavelength due to the biologicals being imaged, thus
preferences for a two-photon microscope, however there are further physical reasons to favour the two-
photon microscope, despite its lack of resolution.

The obvious improvement is that a two-photon microscope would have an improvement in with the
amount of noise in a measurement. This could be shown by considering a Gaussian beam of light. For
longer wavelengths of light, we would expect smaller divergence of light over its travelled path compared
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to shorter wavelengths of light. Since the two-photon and confocal microscopes are scanning, there would
be less light form neighbouring scans with the longer wavelength, thus we would wish to use light of the
longer wavelength. Thus, the two-photon microscope would be favoured.

Note also that this analysis has really just been simulations performed on an established model of
light at a focus. This does not include any inhomogeneities in the lens material or media in which the
imaging has been performed. Note also that confocal and two-photon microscopes are complex systems
and involve more than just light being focused at a point then received at some other focus. A more
rigorous analysis could consider the specific optics of the microscope and the differences in the media
being imaged.

5 Conclusion

We find that a confocal microscope has greater resolution than a two-photon microscope. The depth
resolution is greater than the lateral resolution for both green and red protein tags. The enhanced green
fluorescent protein tag has greater resolution than the DsRed protein tag.
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A MATLAB Code

A.1 Single wavelength intensity distributions

This was the code used to calculate the values of the intensities for each wavelength of light. This also
generated the figures for the single wavelengths.

%% Fields report

% To generate all figures for report

% The main variable will be the wavelength lambda

% As we vary lambda, we can see the intensity plots around the focus

% The focus will be at position (0,0)

% From the plots we should be able to determine the resolution!

clear

%% variables

lambda = 488e-9; % nm

NA = 1.3; % (a/f) in written notes

%% Hard coded relations

% 0.0008 and 0.0003 give 5001 steps

% 0.0133 and 0.005 give 301 steps

z = -2:0.0133:2; % nm

z = z*1e-6;

r = -0.75:0.005:0.75; % nm

r = r*1e-6;

% p = 0:0.0002:1;

% vp = v.*p;

% expup = -0.5*1i*u.*p.*p;

coeff = -1i*2*pi*(1.3^2)/(1.518*lambda);

%% Integrating

Intensity = zeros(length(r)); % j by k

j = 1; % row counter

while j <= length(r), % moving down row, v fixed u varied

u = (2*pi/lambda) * (1.3^2) * z(j) * (1/1.518);

k = 1; % column counter

while k <= length(z), % moving through columns of one row, u fixed v varied

v = (2*pi*1.3/lambda) * r(k);

integrand = @(p)besselj(0,v*p) .* exp(-0.5*1i*u*(p.*p)) .* p;

Amplitude = coeff*exp(-1i* ((1.518/1.3)^2) * u) * quadgk(integrand,0,1);

Intensity(j,k) = abs(Amplitude).^2;

% Intensity(j,k) = 1;

k = k+1;

end

clc

progress = j/length(r) % Yes, I’m impatient
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j = j+1;

end

figure(1)

surface(r,z,Intensity, ’EdgeColor’,’none’)

view([0 90])

xlabel(’r (\mu m)’)

ylabel(’z (\mu m)’)

zlabel(’Intensity’)

title(’Intensity plot for \lambda = ’)

A.2 Combining the single wavelength intensity distributions

This took the dataset formed from the result of all of the individual wavelength distribution calculations.

%% Fields Project handling plots

clear

load(’allwavelengths.mat’)

%% Normalising

u = (2*pi/1064e-9) * (1.3^2) * z * (1/1.518);

v = (2*pi*1.3/1064e-9) * r;

Intensity1064 = Intensity1064/sqrt( trapz(u,trapz(v,Intensity1064))^2);

u = (2*pi/900e-9) * (1.3^2) * z * (1/1.518);

v = (2*pi*1.3/900e-9) * r;

Intensity900 = Intensity900/sqrt( trapz(u,trapz(v,Intensity900))^2);

u = (2*pi/645e-9) * (1.3^2) * z * (1/1.518);

v = (2*pi*1.3/645e-9) * r;

Intensity645 = Intensity645/sqrt( trapz(u,trapz(v,Intensity645))^2);

u = (2*pi/520e-9) * (1.3^2) * z * (1/1.518);

v = (2*pi*1.3/520e-9) * r;

Intensity520 = Intensity520/sqrt( trapz(u,trapz(v,Intensity520))^2);

u = (2*pi/568e-9) * (1.3^2) * z * (1/1.518);

v = (2*pi*1.3/568e-9) * r;

Intensity568 = Intensity568/sqrt( trapz(u,trapz(v,Intensity568))^2);

u = (2*pi/488e-9) * (1.3^2) * z * (1/1.518);

v = (2*pi*1.3/488e-9) * r;

% for j = 1:length(v),

% Intensity488(j,:) = (4*Intensity488(j,:).* (v.^2));

% end

Intensity488 = Intensity488/sqrt( trapz(u,trapz(v,Intensity488))^2);

% Intensity488 = Intensity488*1e-10;

% Intensity568 = Intensity568*1e-10;
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% Intensity520 = Intensity520*1e-10;

% Intensity645 = Intensity645*1e-10;

% Intensity900 = Intensity900*1e-10;

% Intensity1064 = Intensity1064*1e-10;

%% Combine the intenisities

TwophotonRed = log(Intensity1064.^2 .* Intensity645);

TwophotonGreen = log(Intensity900.^2 .* Intensity520);

ConfocalRed = log(Intensity568.* Intensity645);

ConfocalGreen = log(Intensity488 .* Intensity520);

%% figures

% figure(2)

% surface(r,z,TwophotonRed, ’EdgeColor’,’none’)

% view([0 90])

% xlabel(’r (\mu m)’)

% ylabel(’z (\mu m)’)

% zlabel(’Intensity’)

% title(’Intensity plot for DsRed two-photon’)

%

% figure(2)

% surface(r,z,TwophotonGreen, ’EdgeColor’,’none’)

% view([0 90])

% xlabel(’r (\mu m)’)

% ylabel(’z (\mu m)’)

% zlabel(’Intensity’)

% title(’Intensity plot for EGFP two-photon’)

%

%

%

% figure(5)

% surface(r,z,ConfocalRed, ’EdgeColor’,’none’)

% view([0 90])

% xlabel(’r (\mu m)’)

% ylabel(’z (\mu m)’)

% zlabel(’Intensity’)

% title(’Intensity plot for DsRed confocal’)

% figure(5)

% surface(r,z,ConfocalGreen, ’EdgeColor’,’none’)

% view([0 90])

% xlabel(’r (\mu m)’)

% ylabel(’z (\mu m)’)

% zlabel(’Intensity’)

% title(’Intensity plot for EGFP confocal’)

%% Finding FWHM
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[TRFWHMI TRFWHMJ] = find(TwophotonRed >= log(0.5*exp(max(max(TwophotonRed)))));

TRFWHMI = abs(151*ones(size(TRFWHMI)) - TRFWHMI);

TRFWHMJ = abs(151*ones(size(TRFWHMJ)) - TRFWHMJ);

TRFWHMr = z(151+max(TRFWHMJ))

TRFWHMz = r(151+max(TRFWHMI))

[TGFWHMI TGFWHMJ] = find(TwophotonGreen >= log(0.5*exp(max(max(TwophotonGreen)))));

TGFWHMI = abs(151*ones(size(TGFWHMI)) - TGFWHMI);

TGFWHMJ = abs(151*ones(size(TGFWHMJ)) - TGFWHMJ);

TGFWHMr = z(151+max(TGFWHMJ))

TGFWHMz = r(151+max(TGFWHMI))

[CRFWHMI CRFWHMJ] = find(ConfocalRed >= log(0.5*exp(max(max(ConfocalRed)))));

CRFWHMI = abs(151*ones(size(CRFWHMI)) - CRFWHMI);

CRFWHMJ = abs(151*ones(size(CRFWHMJ)) - CRFWHMJ);

CRFWHMr = z(151+max(CRFWHMJ))

CRFWHMz = r(151+max(CRFWHMI))

[CGFWHMI CGFWHMJ] = find(ConfocalGreen >= log(0.5*exp(max(max(ConfocalGreen)))));

CGFWHMI = abs(151*ones(size(CGFWHMI)) - CGFWHMI);

CGFWHMJ = abs(151*ones(size(CGFWHMJ)) - CGFWHMJ);

CGFWHMr = z(151+max(CGFWHMJ))

CGFWHMz = r(151+max(CGFWHMI))
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