Transformation

Swiss Federal Institute of Technology Lausanne iGEM team 2010, Dupont Thibault, Gerweck

Nadia, Grädel Nadine, Helfer Jonas, Lisowski Wiktor, Monnot Gwennaëlle, Perrudet Christian, Richter Solange, Varricchio Stefano, Vokali Efthymia, Dénervaud Nicolas, Gubelmann Carine, Niederholtmeyer Henrike Marie, Opota Onya, Deplancke Bart, Maerkl Sebastian.

Introduction

Now that you have competent cells, you can transform them. We use the technique of electroporation. So you need an electroporator in the lab.

Material

To transform the competent cells, you need :

- An electroporator machine
- $\quad 100 \mu \mathrm{~m}$ diameter cuvette for the electroporator
- 65μ l of competent Asaia for each transformation
- The plasmid you want to transform
- 1 ml of Glycerol for each transformation

Figure 1.1 mm diameter cuvette

Protocol

1. Put all 1 mm diameter cuvettes on ice to cool them down.
2. Mix $0.2 \mu \mathrm{~g}$ of plasmid and $65 \mu \mathrm{l}$ of competent Asaia. Don't pipet up and down too much and keep on ice.
3. Transfer the solution at the bottom of a 1 mm diameter cuvette.
4. Ensure that all the liquid is at the bottom of cuvette by gently tapping the tube on the bench twice.
5. Dry the cuvette to prevent electric arc in the electroporator.
6. Put the cuvette in the electroporator.
7. Make a 2 ' 000 V pulse. If you hear an electric arc, all your cells are dead. Restart the transformation.
8. Mix the transformed cells immediately with 1 ml of GLY medium.
9. Transfer the solution into a 1.5 ml microtube.
10. Incubate at $30^{\circ} \mathrm{C}$ for 3 hours (shaking).
11. Also put the GLY agar plate with your antibiotic into the incubator to prewarm.
12. Plate the cells and incubate them at $30^{\circ} \mathrm{C}$

INCUBATION TIME

If the plate contains some antibiotic, e.g. Tetracycline, you will start to see colonies after 2-3 days.

Here are the different concentration we use for Tetracycline and Kanamycin

- Tetracycline : $50 \mu \mathrm{~g} / \mathrm{ml}$
- Kanamycin : $100 \mu \mathrm{~g} / \mathrm{ml}$

Figure 2. Electroporator

