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Abstract: The analysis of complex biochemical networks is conducted in two popular conceptual
frameworks for modelling. The deterministic approach requires the solution of ordinary differential
equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The
stochastic approach involves the simulation of differential-difference equations (chemical master
equations, CMEs) with probabilities as variables. This is to generate counts of molecules for
chemical species as realisations of random variables drawn from the probability distribution
described by the CMEs. Although there are numerous tools available, many of them free, the mod-
elling and simulation environment MATLAB is widely used in the physical and engineering
sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deter-
ministic simulation and to implement realisations of CMEs for stochastic simulation using
advanced MATLAB coding (Release 14). The program was successfully applied to pathway
models from the literature for both cases. The results were compared to implementations using
alternative tools for dynamic modelling and simulation of biochemical networks. The aim
is to provide a concise set of MATLAB functions that encourage the experimentation
with systems biology models. All the script files are available from www.sbi.uni-rostock.de/
publications_matlab-paper.html.
1 Introduction

Modelling and simulation of pathways as networks of
biochemical reactions have received increased interest in
the context of systems biology [1]. There are two popular
frameworks for modelling intracellular dynamics. The
deterministic modelling is based on the construction of a
set of rate equations to describe the reactions in the bio-
chemical pathways of interest. These rate equations are in
fact non-linear ordinary differential equations (ODEs)
with concentrations of chemical species as variables [2–5].
Deterministic simulation produces concentrations by
solving the ODEs. The stochastic modelling involves the
formation of a set of chemical master equations (CMEs)
with probabilities as variables [6]. Stochastic simulation,
however, produces counts of molecules of some chemical
species as realisations of random variables drawn from
the probability distribution described by the CMEs.
Which framework is appropriate for a given biological
system is not only a question of what biological phenomena
is investigated but also influenced by assumptions one
makes to simplify the analysis [7]. In most cases, neither
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ODEs nor CMEs have a simple closed form solution,
in which case one resorts to numerical simulations.

A large number of software tools are available for
both deterministic and stochastic simulations (see
www.sbml.org). For a survey of tools, we will refer the
readers Huang and Ferrell [8] and a collection of models
[9]. The aim of this article is not to argue for one or the
other tool, but to provide a small collection of files that
will allow MATLAB [10] users to model and simulate bio-
chemical pathways without resorting to specialist tools or
toolboxes and to encourage experimentation with models.
MATLAB is a commercial tool that is widely used in the
physical and engineering sciences and frequently available
at universities. The main advantage of MATLAB over C/
Cþþ/Java and so on is that MATLAB is a scripting
language, allowing the user to easily edit available func-
tions according to his needs. MATLAB has other function-
alities including ready access to data analysis and
optimisation tools and advanced visualisation techniques
and a programmable graphical user interface. Moreover,
MATLAB has built-in vector/matrix representations and
manipulations, which can be exploited for speedy simu-
lation and comes with a handful of toolboxes that simplifies
coding. The structure of these scripts is compact, and they
are easy to understand and can be modified to one’s own
particular needs.

2 ODE modelling

In our ODE framework, modelling a pathway involves
two steps. First, the pathway is decomposed into a set of
elementary reactions for which the information is encoded
in three matrices, related to the stoichiometry and rate
coefficients of the biochemical system. This information is
used to construct and solve the ODEs. It is assumed that a
pathway can be decomposed into unidirectional elementary
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reactions. Then law of mass action can be applied to each
elementary reaction to obtain ODEs. We shall discuss
other approaches to construct the right-hand side of the fol-
lowing differential equations. The flexibility of MATLAB
documents also allows other approaches (e.g. power law
representations or S-systems) which are not discussed
here. Most of the elementary reactions can be grouped
into three categories. Association: where an enzyme binds
to a substrate to form a complex. Dissociation: where
the complex dissociates back into the substrate and
enzyme [11]. Product formation: where the enzyme con-
verts the substrate into the product. To set up a general
mathematical framework, consider a biochemical reaction
network or pathway involving N molecular species. To
apply the law of mass action, the network is decomposed
into M elementary reactions (also called reaction channels).
An elementary reaction will be written as

Rj:
XN

i¼1

lijXi�!
kj
XN

i¼1

rijXi; j ¼ 1; . . . ;M ð1Þ

where Xi is ith chemical species; Rj, jth elementary
reaction; lij, rij, stoichiometric coefficients and kj, rate
coefficient for Rj.

The stoichiometric coefficients are non-negative integers.
If a species Xi is not a reactant in reaction Rj, lij is zero.
Similarly rij ¼ 0, if Xi is not a product in Rj. We will be
using the simplified notation xi for the molar concentration
[Xi] and x ¼ [xi]N�1 for the vector of concentrations. As Rj

is an elementary reaction, one of lij and rij must always be
zero. This means that the step change in xi, after completion
of Rj denoted dij ¼ rij 2 lij, is given by

dij ¼

�lij if Xi is a reactant in Rj

þrij if Xi is a product in Rj

0 otherwise

8<
: ð2Þ

We can thus write for the reaction rate vj of Rj

vjðxÞ ¼ kj

YN
i¼1

x
lij
i ðtÞ ð3Þ

and for the system of ODEs describing how each concen-
tration changes over time

_xiðtÞ ¼
XM
j¼1

dijvjðxÞ ð4Þ

For a more formal development of (1)–(4), we will refer the
Heinrich and Schuster and Wolkenhauer et al. [12–14].
Substituting (3) into (4) and writing pj(x) ¼

Q
i¼1
N xi

lij(t) we
obtain a more practical form

_xiðtÞ ¼
XM
j¼1

dij kj pjðxÞ ð5Þ

Defining matrices k ¼ [kj]1�M, L ¼ [lij]N�M, D ¼ [dij]N�M

and p(x) ¼ [pj(x)]1�M, the previous equations can be
written in the vector form

_x ¼ V ðxÞ ¼ D � ðk � �pðxÞÞ0 ð6Þ

where � denotes matrix multiplication, .� the entry-wise
(Hadamard) multiplication, 0 the transpose of a matrix and
V(x) the vector field. Notation for the binary operations in
the last equation has been chosen to relate easily to
MATLAB. In a more realistic framework, known as gener-
alised mass action (GMA) modelling, the exponents lij are
replaced by non-negative real numbers (kinetic orders) [4].
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The modelling approach described earlier can be illus-
trated by an enzyme-kinetic reaction, as a simple example

Eþ SO
k1

k2

ES�!
k3

Eþ P ð7Þ

which can be decomposed into the following three elemen-
tary reactions

R1: Eþ S�!
k1

ES

R2: ES�!
k2

Eþ S

R3: ES�!
k3

Eþ P

where E, S, ES and P are enzyme, substrate, complex
and product, respectively. The matrices x, k, L and D will
assume the following values for this example

x ¼

½E�

½S�

½ES�

½P�

2
6664

3
7775; k ¼ k1 k2 k3

� �

L ¼

1 0 0

1 0 0

0 1 1

0 0 0

2
6664

3
7775; D ¼

�1 1 1

�1 1 0

1 �1 �1

0 0 1

2
6664

3
7775

Substituting these values in (6), we arrive at four ODEs.
Biochemists are commonly interested in the rate or

velocity of the enzymatic reaction, denoted V3 and assume
that ẋ3 ¼ 0 (quasi-steady state). This gives us the familiar
Michaelis–Menten equation

V3 ¼ _x4 ¼ �_x2 ¼
k3x1x2

Km þ x2

ð8Þ

where Km ; (k2þ k3)/k1 is called Michaelis–Menten
constant.

Next, we consider an important aspect of modelling
signal transduction pathways, the activation and deactiva-
tion through phosphorylation/dephosphorylation, modelled
as two enzymatic reactions

Rj1: Sj þ EjO
aj1

dj1

SjEj���!
kj1

Xj

Rj2: Xj þ PjO
aj2

dj2

XjPj�!
kj2

Sj

where Rj1 is jth phosphorylation; Rj2, jth dephosphoryl-
ation; Sj, unphosphorylated protein for Rj; Xj, phosphory-
lated protein Rj; Ej, kinase for Rj; Pj, phosphatase for Rj;
aj1, dj1, kj1, rate coefficients for Rj1 and aj2, dj2, kj2, rate
coefficients for Rj2.

In the literature, not all these rate constants are available
at all the time. If only kj1, kj2, Kj1, Kj2 are available, where
Kj1, Kj2 are Michaelis–Menten constants, the reaction
velocities for each step can be written using (8)

Vj1 ¼
kj1ejsj

Kj1 þ sj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
phosphorylation

; Vj 2 ¼
kj 2pjxj

Kj 2 þ xj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
dephosphorylation

ð9Þ

with the rate equation

_xjðtÞ ¼ Vj1 � Vj2 ð10Þ
IEE Proc.-Syst. Biol., Vol. 153, No. 2, March 2006



Any coupling between Rj with other steps can be incorporated
into the last equation with an additive term as needed. The
introduction of such feedback loops and experimentation
with their effect can easily be done in these MATLAB
functions. In most cases, the phosphatase pj is assumed
constant and lumped into the rate constant kj2.

We thus have two ways of ODE modelling for pathways.
Decomposition into elementary reactions leads to (6),
whereas decomposition into phosphorylation/dephosphory-
lation steps leads to (9). Both of these sets of equations have
a form, which can be implemented in MATLAB very effi-
ciently by utilising the vectorised code. Examples will be
given in the following sections.

3 Stochastic modelling

The stochastic framework involves the same decomposition
of a pathway into elementary reactions. However, here we
are looking at populations or counts of molecules, #Xi,
for each species Xi. The goal is to determine the probability
distribution which is defined as

PnðtÞ W Probf#XðtÞ ¼ ng ð11Þ

where #X(t) ¼ [#Xi]N�1 and n [ Zþ
N denotes the vector of

counts of molecules for all molecular species involved. The
vector of step changes after the completion of elementary
reaction Rj will be denoted by Dj [ ZN. The chemical
master equation for this system takes the form

dPnðtÞ

dt
¼
XM
j¼1

½ajðn� DjÞPn�Dj
ðtÞ � ajðnÞPnðtÞ� ð12Þ

where aj(n) is referred to as the propensity of reaction
Rj, defined such that aj(n) dt is the probability of reaction
Rj occurring in the time interval [t, tþ dt], given that
#X(t) ¼ n. For intuitive proofs of this equation, we will
refer the readers to van Kampen and Wolkenhauer et al.
[6, 7].

As a simple example, consider the stochastic gating of an
ensemble of ion channels. Each channel has two states, one
closed (C) and the other open (O) [5], which is equivalent
to an isomerisation reaction where a molecule changes its
conformation

CO
a

b
O alternatively XcO

a

b
Xo ð13Þ

Let us write nT for the number of channels, and let PC(n, t)
and PO(n, t) be the probabilities of having n channels in
state O and C, respectively. As the presence of n open
channels implies nT 2 n closed channels, we have

PCðn; tÞ ¼ POðnT � n; tÞ; 0 � n � nT

We therefore need only one differential equation. Writing
Pn(t) ¼ PO(n, t), we arrive at the CME [5]

dPnðtÞ

dt
¼ ðnT � nþ 1ÞaPn�1ðtÞ � ðnT � nÞaPnðtÞ

þ ðnþ 1ÞbPnþ1ðtÞ � nbPnðtÞ ð14Þ

Formal analysis of even simple CMEs like (14) is difficult.
One possibility is to approximate the CME by a truncated
Taylor expansion [6, 15, 16]. However, it is often more
practical to simulate the CME directly. Each of the elemen-
tary reactions of the system (1) can be modelled as a con-
tinuous Markov process [5]. Thus, Monte Carlo methods
[5] can be employed to simulate such systems as cascades
of Markov processes. For a specific class of Markov
IEE Proc.-Syst. Biol., Vol. 153, No. 2, March 2006
processes, Gillespie [17] developed an efficient algorithm
which has been frequently used [18–21]. A comparison of
these approaches and biological examples can easily be
realised with the MATLAB functions provided here.

4 Methods

The script files are written and optimised for MATLAB 7
(Release 14). In the following two sections, we will
explain the MATLAB scripts developed to realise deter-
ministic and stochastic simulations. The programs are
written in a way to facilitate entering information about
the pathway to be analysed. It will turn out that entering
pathway models only involves a few matrices. Moreover,
the vectorised features of MATLAB ensure that each line
of code corresponds intuitively to its mathematical counter-
part in the model. The purpose of describing the MATLAB
code here is not only to encourage the reader to experiment
with models but also to show how advanced MATLAB
functions can be used to obtain compact programs.

4.1 Deterministic simulation

4.1.1 Mass action kinetics: For the first part of our
toolbox, our goal is to encode the vector field V(x).
Towards this end, the idea of a function handle in
MATLAB is used. A function handle stores the information
about a function or expression and can be used in other
MATLAB scripts/functions, as if it was a function per se.
The following two lines of code will return a function
handle to compute V(x)

M1s=ones(size(k));
V=@(t, x) D*(k.*prod(x(:,M1s).^L))’;

where D,k,L and x are MATLAB variables representing,
respectively, D, k, L and x; and the function handle V rep-
resents the vector field V(x). Note the simplicity of this code
and its intuitive resemblance to (6), its mathematical
counterpart. As far as biochemical pathways are concerned,
most of the elements in the matrices D and L are zeros, a fact
not exploited by the earlier-mentioned code. To exploit this,
an optimised form to realise V(x) is the following function
gma:

function V=gma(D,k,L)
if nargin<3
L=-D.*(D<0);
i2=L>1;

else
i2=L>0 & L~=1;

end
i0=L==0;
M1s=ones(size(k));
V=@Vfn;
function xd=Vfn(t,x)
X=x(:,M1s);
X(i0)=1;
X(i2)=X(i2).^L(i2);
xd=D*(k.*prod(X)).’;
end

end.

It can be seen that computationally intensive operations like
products and raising powers have been significantly reduced
in this new function. This function will be subsequently used
to construct the differential equations from information
encoded in D, k and L. The use of the nested function
Vfn in the earlier-mentioned code is a useful feature
of MATLAB 7. For a specific pathway, the function gma
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has to be called only once to generate V. Subsequently,
whenever V is called as a function in simulations, only the
nested function will be executed. This improves the speed
of simulations, particularly when V is used many times, for
example, in bifurcation analysis [22] and stimulus-response
plots [11, 23]. Note that this code can be used for two
different modelling frameworks. For mass action models,
the function gma can be called with just the first two input
arguments because the last argument, L, can be computed
from the matrix D, according to (2). For the case of GMA
models, additionally the matrix L has to be provided.

The enzyme-kinetic reaction (7) corresponds to only
a single phosphorylation or dephosphorylation step in a
signalling cascade. For more complex pathways, the size
of these matrices will naturally grow. For example, the
well-known mitogen-activated protein kinase (MAPK)
signalling cascade [11], in its simplest form (without feed-
back), comprises 30 elementary reactions, involving 22
chemical species. The respective sizes of L,D and k will
be 30 � 30, 22 � 30 and 30 � 1. In this case, it may not
be practical to input these matrices during the MATLAB
user interface. An intuitive approach is to encode these
matrices in Microsoft Excel spreadsheets by the inspection
of the pathway. These spreadsheets can be imported into the
MATLAB very easily by calling the MATLAB function
xlsread. This is described in further details subsequently.
A more practical approach is to compute the matrices from
an SBML model. For the convenience of the user, we have
included a function importSBML. The calling syntax for
the function is

[D,k,x0]=importSBML

where D and k are as defined previously and x0 is the vector
of initial conditions (concentrations). The conclusion is that
the function gma presented here is general and can be used
to compute reaction rates for larger pathways.

The second part of our small toolbox calls a MATLAB
ODE solver for a numerical simulation of the model. The
common syntax of calling a solver in MATLAB looks
like this

[t,x]=ode15s(V,tspan,x0);

where V is the vector of function handles returned by the
function gma, tspan a vector specifying the time span
of simulation and ode15s the MATLAB solver chosen.
Such solvers are standard MATLAB functions. A range of
other ODE solvers are offered if there are particular numeri-
cal requirements.

The following MATLAB code illustrates the simulation
of the enzyme-kinetic example (7).

x0=[0.5; 1; 0; 0];
D=[-1 1 1;-1 1 0;1 -1 -1;0 0 1];
L=-D.*(D<0);
k=60*[10 2 0.02];
M1s=ones(size(k));
V=@(t,x) D*(k.*prod(x(:,M1s).^L)).’;
[t,x]=ode15s(V, [0 10], x0);

Once the information about the pathway is available, only
two lines of code are required to construct and simulate
the system.

4.1.2 Michaelis—Menten kinetics: Next we consider
the implementation of (9) and (10). The form of these
equations lends itself naturally to a vectorised code.
Assume the variables s,e,k,K and V are defined in the
56
MATLAB workspace, corresponding to the variables in
(9) and (10),

s : vector of all sj

e : vector of all ej

k : matrix
1st column: vector of all kj1

2nd column: vector of all kj2

�

K : matrix
1st column: vector of all Kj1

2nd column: vector of all Kj2

�

V : matrix
1st column: vector of all Vj1

2nd column: vector of all Vj2

�

xd : vector of all _xj

Note that the vector of phosphatases p has been assumed
constant and lumped into the vector of rate constants
k(:,2). The following lines of the MATLAB code are
needed to construct ODEs for a pathway, on the basis of
the Michaelis–Menten kinetics.

V(:,1)=k(:,1).*e.*s./(K(:,1)+s);
V(:,2)=k(:,2).*x./(K(:,2)+x);
xd=V(:,1) - V(:,2);

4.2 Stochastic simulation

Two widely used techniques for stochastic simulations are
Monte Carlo simulation [5] and Gillespie’s method [17].
Monte Carlo simulation involves generating uniform
random numbers. For the two-state ion channel model
(13), we would choose a random number Y uniformly
distributed on the interval [0, 1] and make a transition
(or not) in a time step of duration Dt based on the sub-
interval into which Y falls. An open channel will close
if 0 � Y � bDt and a closed channel will open if
1 2 aDt � Y � 1. Gillespie’s method exploits the fact that
the time to the next transition (or next reaction) is an expo-
nentially distributed random variable with the reciprocal of
transition rate (or rate coefficient) as the mean. Thus we can
simulate the two state channel by alternatively choosing
open and closed dwell times consistent with these distri-
butions. The method is exact because there is no time step
involved. However, it assumes that transition rates (a, b)
are functions of the state n only. When transition rates
vary with time through variables other than n, Gillespie’s
method cannot be applied.

In complex systems, like (1), more than one possible
transition (reaction) may contribute to the dwell time for a
given state. Then Gillespie’s method becomes involved,
requiring the computation of stochastic rate constants cj

given by

cj ¼
kj

ðNAV ÞKj�1

YN
i¼1

lij! ð15Þ

for each reaction Rj, where V is the volume, NA the
Avogadro’s constant and Kj ¼

P
i¼1
N lij. The other important

quantity required by the algorithm is prospensity aj given by

aj ¼ cj

YN
i¼1

ni

lij

� �
ð16Þ

where
ni

lij

� �
is the binomial coefficient. For proofs of (15)

and (16) we will refer the readers Wolkenhauer et al. and
IEE Proc.-Syst. Biol., Vol. 153, No. 2, March 2006



Gillespie [7, 17]. In light of the terminology in (1), a brief
outline of Gillespie’s algorithm is

† Initialisation:
– load reactions and compute cj

– t, n, random number generator
† Iteration:

– compute aj for each reaction Rj

– a� ¼
P

j¼1
M aj

– generate uniform random numbers r1, r2

– compute t ¼ 2(1/a�)ln r1

– m such that
P

j¼1
m21aj � r2a� ,

P
j¼1
m aj

– set n ¼ nþDm

– set t ¼ tþ t
† Termination:

–terminate when t � tmax or a� ¼ 0

Our implementation of Gillespie’s algorithm in
MATLAB looks intuitively similar to this pseudocode.
The following MATLAB code implements Gillespie’s
algorithm, provided the MATLAB variables
n0,L,D,c,tmax are available in the workspace (which
is included in the initialisation of the algorithm).

[t,n,i1,i2,M1s]=...
deal(0,n0,L==1,L==2,ones(size(c)));

rand(‘state’, sum(100*clock));
while t <= tmax

m=n(:,M1s);
b=double(~L);
b(i1)=m(i1);
b(i2)=m(i2).*(m(i2)-1)/2;
a=c.*prod(b);
astr ¼ sum(a);
if ~astr, break, end
tau=-1/astr*log(rand);
u ¼ find(cumsum(a)>astr*rand,1);
n=n+D(:,u);
t=t+ tau;

end

The MATLAB variable n0 corresponds to the initial
population vector n0, c to the vector of stochastic rate
constants c, and tmax to the final time of simulation. It
can be seen that all the computations, which are indepen-
dent of the time-varying state of the system n, are done
outside the while loop. In multiple runs of simulation,
the while loop will be made into a nested function to
speed-up simulations, so that the pre-computed quantities
are visible to it.

In the following, all the deterministic and stochastic
simulations were performed by using simple programs
like those explained so far.

5 Results

5.1 ODEs (mass action)

The first example for our simulations is the enzyme-kinetic
reaction (7), for which the results are shown in Fig. 1. As a
second example, we consider the MAPK pathway model
published by Huang and Ferrell [11]. The pathway is
composed of 30 elementary reactions, which gives rise
to 18 rate equations with 30 parameters. Owing to the
large size of the matrices L,D and k for the considered
pathway, we use an Excel spreadsheet to store these
IEE Proc.-Syst. Biol., Vol. 153, No. 2, March 2006
matrices. The data in the spreadsheet need to be structured
in the following way:

rows columns fill

1 all comments

all 1 comments

2 3:end k

3:end 2 x0

3:end 3:end D

The MATLAB function xlsread can be used to import
an Excel spreadsheet into MATLAB. The following piece
of code imports the spreadsheet MAPK.xls into a matrix,
extracts the required matrices (x0,k,D) and saves them
in a compressed format (.mat), so that they can be
loaded efficiently into MATLAB.

Fig. 1 Simulation of enzyme-kinetic reaction

a

b

Fig. 2 Simulation of MAPK pathway

a Time history
b Stimulus–response curve
For parameters, we refer the readers to Huang and Ferrell [11]
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T=sparse(xlsread(‘MAPK.xls’));
x0=T(2:end,1);
k=T(1,2:end);
D=T(2:end, 2:end);
save mapk x0 k D

The last line of the previous code generates the data file
mapk.mat which stores the matrices x0,k and D in the
aforementioned form. When these matrices are needed in
a simulation script, the MATLAB function load is used
to import them from mapk.mat. This is more efficient
than calling xlsread repeatedly. If one wishes to
change parameters, say for bifurcation analysis, this can
be done in the script file, because one needs to change
only few parameters. For example, to generate a
stimulus–response curve, only one of the initial conditions
(the stimulus) is changed in each simulation run. The
following piece of code generates the temporal evolution
of concentrations for some key variables

load mapk
[t,x]=ode15s(gma(D,k),[0 50],x0);
plotyy(t,1e3*x(:,4),t,x(:,[13 21]));

which is shown in Fig. 2a. The following piece of code
generates the stimulus–response curve shown in Fig. 2b.

load mapk
V=gma(d,k);
tspan=[0 50 100];
n=50;
E1=logspace(-6,-1,n);
xx=x0(:,ones(1,n));
for i=1:n

x0(2)=E1(i);
[t,x]=ode15s(V,tspan,x0);
x0=x(end,:);
xx(:,i)=x0;

end
xxm=max(xx,[],2);
xx=xx./xxm(:,ones(1,n));
semilogx(E1, xx([4 13 21],:));

The computation times to generate these two plots were
approximately 1.5 and 1.95 s, respectively, on a Pentium
4 system with a 3 GHz CPU. These two plots for MAPK
cascade can be compared with the ones in Huang and
Ferrell [11]. It should be noted that stimulus–response
curves require multiple simulation runs (50 here) of the
system and demonstrate the effectiveness of the previously
mentioned code in these situations. To appreciate the
simplicity of the MATLAB code for these simulations, a
comparison should be made with the Mathematica code
used in Huang and Ferrell [11].

Fig. 3 Simulation of MAPK pathway with feedback [24]
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5.2 ODEs (Michaelis–Menten)

As an illustration for implementing the Michaelis–Menten
kinetics, we consider the MAPK pathway with feedback
[24]. The following MATLAB code was written to generate
the plot in Fig. 3 which shows that ultrasensitivity combined
with feedback gives rise to oscillations.

function pathway
k=[2.5.25;.025.75;.025.75; ...

.025.5;.025.5];
Km=[10 8;15 15;15 15;15 15;15 15];
[xT,x0,KI,n,u]=deal([100;300;300],...

zeros(5,1),9,1,1);
function xd=rate(t,x)
s=[xT(1)-x(1);xT(2)-x(2)-x(3); ...

x(2);xT(3)-x(4)-x(5);x(4)];
e=[u/(1+(x(5)/KI)^n);x([1;1;3;3])];
V=[k(:,1).*e.*s./(Km(:,1)+s) ...

k(:,2).*x./(Km(:,2)+x)];
xd=V(:,1) - V(:,2);
xd([2 4])=xd([2 4])-xd([3 5]);

end
[t,x]=ode15s(@rate, [0 150*60], x0);
plot(t/60,x(:,[1 3 5]))
end

5.3 CMEs

As an illustration, we have simulated the enzyme-kinetic
reaction (7) by employing Gillespie’s algorithm for which
we gave a MATLAB implementation in Section 4.2.
The simulation results, together with deterministic results
for comparison, are given in Fig. 4 that uses the parameters:
V ¼ 1 pL, [E]0 ¼ 0.01, [S]0 ¼ 0.1, [ES]0 ¼ [P]0 ¼ 0,
k1 ¼ 10 (nM s)21, k2 ¼ 2 s21, k3 ¼ 0.02 s21.

For a further example, we consider the Li-Rinzil Markov
model for stochastic Ca2þ release from small clusters of
inositol 1,4,5-triphosphate receptors (IP3Rs). For details
and parameters of the model, we will refer the readers
Shuai et al. [25]. A cluster consists of nT IP3 Rs with
three stochastic h gates each. The channel will be open
only if all the three h gates are open. As specified by
Shuai and Jung, a is a function of [IP3R] treated as stimulus,
and hence a is fixed for a fixed stimulus. However, b is a
function of [Ca2þ] whose release is stochastic because of
stochastic opening of IP3 channels, leading to a variation
of b with time, and hence we cannot use Gillespie’s
algorithm in this case. To determine the channel opening
pattern, that is, calcium release, over time, uniform
random numbers are generated. For each time step st, we
need to generate 3nT random numbers. Again, the

Fig. 4 Stochastic simulation using Gillespie’s algorithm for
enzyme-kinetic reaction
IEE Proc.-Syst. Biol., Vol. 153, No. 2, March 2006



vectorised features of MATLAB can be employed. The
following piece of code illustrates the implementation of
this alternative method:

% random configuration of channels
isop=unidrnd(2,nT,3) - 1;
% generate 3*nT random numbers
y=rand(nT,3);
% find indices for transitions
id=(isop & y<bhdt) | (~isop & y<ahdt);
% make transition based on y
isop(id)=~isop(id);
% find the number of h-open channels
hop(i+1)=numel(nonzeros(all(isop,2)));

Note the compact way of generating random numbers for
all time points by a single call to MATLAB function rand
and the resulting ease by which the state of all gates is cal-
culated. These matrix oriented features can be appreciated
by comparing this with programs written in other languages.
The result of the simulation is shown in Fig. 5 where a
calcium trace is compared with the associated trace of the
fraction of h-open channels. This plot corresponds to
Fig. 2 given by Shuai et al. [25].

6 Discussion

Systems biology is an art of making appropriate assump-
tions. It is for this reason that experimentation with
models is an important aspect of the modelling cycle.
MATLAB is a modelling and simulation language and
environment that encourages such experimentation, not
only with parameter values but also with model structures.
We describe a collection of MATLAB functions to con-
struct and solve ODEs for deterministic simulation and to
implement realisations of CMEs for stochastic simulation
using advanced MATLAB coding (Release 14). The
program was successfully applied to pathway models
from the literature for both cases. In deterministic
simulations, we included mass action and Michaelis–
Menten kinetic models, providing tutorial examples for
enzyme-kinetic reaction and (de)activation step in a
signal transduction pathway (MAPK model with/without
feedback). In stochastic simulation, we covered Markov
processes (illustrated with calcium channeling example)
and Gillespie’s algorithm (illustrated with enzyme-kinetic
reaction). The results were compared to implementations
using alternative tools for dynamic modelling and
simulation of biochemical networks. We observed a style

Fig. 5 Stochastic oscillation of calcium release compared with
the fraction of h-open channels for nT ¼ 20, [IP3] ¼ 0.3 mM
IEE Proc.-Syst. Biol., Vol. 153, No. 2, March 2006
of programming in MATLAB which results in compact
code that has a straightforward resemblance to its
mathematical counterpart in the model. These programs
are compact, easy to modify without compromising on
computational power. MATLAB is available in most
universities and we hope that our small toolbox and
tutorial encourage experimentation with models in
systems biology.

We emphasize that the purpose of this article is not to
provide a comprehensive toolbox but a small collection
of files that invites to experimentation. A fully fledged
systems biology toolbox for MATLAB is available from
www.sbtoolbox.org.
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